Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cell ; 185(9): 1556-1571.e18, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35447072

RESUMO

SARS-CoV-2 Omicron is highly transmissible and has substantial resistance to neutralization following immunization with ancestral spike-matched vaccines. It is unclear whether boosting with Omicron-matched vaccines would enhance protection. Here, nonhuman primates that received mRNA-1273 at weeks 0 and 4 were boosted at week 41 with mRNA-1273 or mRNA-Omicron. Neutralizing titers against D614G were 4,760 and 270 reciprocal ID50 at week 6 (peak) and week 41 (preboost), respectively, and 320 and 110 for Omicron. 2 weeks after the boost, titers against D614G and Omicron increased to 5,360 and 2,980 for mRNA-1273 boost and 2,670 and 1,930 for mRNA-Omicron, respectively. Similar increases against BA.2 were observed. Following either boost, 70%-80% of spike-specific B cells were cross-reactive against WA1 and Omicron. Equivalent control of virus replication in lower airways was observed following Omicron challenge 1 month after either boost. These data show that mRNA-1273 and mRNA-Omicron elicit comparable immunity and protection shortly after the boost.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Macaca , RNA Mensageiro
2.
Immunity ; 57(4): 912-925.e4, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38490198

RESUMO

The spike glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to accumulate substitutions, leading to breakthrough infections of vaccinated individuals. It remains unclear if exposures to antigenically distant SARS-CoV-2 variants can overcome memory B cell biases established by initial SARS-CoV-2 encounters. We determined the specificity and functionality of antibody and B cell responses following exposure to BA.5 and XBB variants in individuals who received ancestral SARS-CoV-2 mRNA vaccines. BA.5 exposures elicited antibody responses that targeted epitopes conserved between the BA.5 and ancestral spike. XBB exposures also elicited antibody responses that primarily targeted epitopes conserved between the XBB.1.5 and ancestral spike. However, unlike BA.5, a single XBB exposure elicited low frequencies of XBB.1.5-specific antibodies and B cells in some individuals. Pre-existing cross-reactive B cells and antibodies were correlated with stronger overall responses to XBB but weaker XBB-specific responses, suggesting that baseline immunity influences the activation of variant-specific SARS-CoV-2 responses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Formação de Anticorpos , Anticorpos , Epitopos , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
J Infect Dis ; 229(2): 310-321, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37981659

RESUMO

BACKGROUND: Preexisting immunity, including memory B cells and preexisting antibodies, can modulate antibody responses to influenza in vivo to antigenically related antigens. We investigated whether preexisting hemagglutination inhibition (HAI) antibodies targeting the K163 epitope on the hemagglutinin (K163 antibodies) could affect antibody responses following vaccination with A/California/07/2009-like A(H1N1)pdm09 influenza viruses in humans. METHODS: Pre- and postvaccination sera collected from 300 adults (birth years, 1961-1998) in 6 seasons (2010-2016) were analyzed by HAI assays with 2 reverse genetics viruses and A(H1N1) viruses circulated from 1977 to 2018. Antibody adsorption assays were used to verify the preexisting K163 antibody-mediated suppression effect. RESULTS: Preexisting K163 antibody titers ≥80 affected HAI antibody responses following influenza vaccination containing A/California/07/2009-like antigens. At high K163 antibody concentrations (HAI antibody titers ≥160), all HAI antibody responses were suppressed. However, at moderate K163 antibody concentrations (HAI antibody titer, 80), only K163 epitope-specific antibody responses were suppressed, and novel HAI antibody responses targeting the non-K163 epitopes were induced by vaccination. Novel antibodies targeting non-K163 epitopes cross-reacted with newly emerging A(H1N1)pdm09 strains with a K163Q mutation rather than historic 1977-2007 A(H1N1) viruses. CONCLUSIONS: K163 antibody-mediated suppression shapes antibody responses to A(H1N1)pdm09 vaccination. Understanding how preexisting antibodies suppress and redirect vaccine-induced antibody responses is of great importance to improve vaccine effectiveness.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adulto , Humanos , Imunidade Humoral , Anticorpos Antivirais , Vacinação , Testes de Inibição da Hemaglutinação , Epitopos
4.
Int Immunol ; 35(4): 197-207, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36413150

RESUMO

The immune evasion of SARS-CoV-2 Omicron variants caused by multiple amino acid replacements in the receptor-binding domain (RBD) of the spike protein wanes the effectiveness of antibodies elicited by current SARS-CoV-2 booster vaccination. The vaccines that target Omicron strains have been recently developed, however, there has been a concern yet to be addressed regarding the negative aspect of the immune response known as original antigenic sin. Here, we demonstrate that the breadth of neutralizing antibodies against SARS-CoV-2 variants is barely elicited by immunizing monovalent viral antigens via vaccination or natural infection in mice and human subjects. However, vaccination of Omicron BA.1 RBD to pre-immunized mice with the original RBD conferred sustained neutralizing activity to BA.1 and BA.2 not only original pseudoviruses. The acquisition of neutralizing antibody breadth was further confirmed in vaccinated-then-Omicron convalescent human sera in which neutralizing activity against BA.1 and BA.2 pseudoviruses was highly induced. Thus, our data suggest that Omicron-specific vaccines or the infection with Omicron viruses can boost potent neutralizing antibodies to the Omicron variants even in the host pre-vaccinated with the original antigen.


Assuntos
COVID-19 , Animais , Humanos , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação
5.
Immunol Rev ; 296(1): 191-204, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32666572

RESUMO

Natural influenza virus infections and seasonal vaccinations often do not confer broadly neutralizing immunity across diverse influenza strains. In addition, the virus is capable of rapid antigenic drift in order to evade pre-existing immunity. The surface glycoproteins, hemagglutinin, and neuraminidase can easily mutate their immunodominant epitopes without impacting fitness. Skewing human antibody repertoires to target more conserved epitopes is thus an expanding area of research: Many groups are attempting to produce universal influenza vaccines that can protect across a wide variety of strains. Achieving this goal will require a detailed understanding of how infection history impacts humoral responses. It will also require the ability to manipulate or enhance B cell selection in order to expand clones that can recognize subdominant but protective epitopes. In this review, we will discuss what immune imprinting means to immunologists and describe efforts to overcome or silence imprinting in order to improve vaccination efficiency.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Epitopos Imunodominantes/imunologia , Influenza Humana/imunologia , Orthomyxoviridae/imunologia , Animais , Antígenos Virais/imunologia , Seleção Clonal Mediada por Antígeno , Humanos , Imunidade Celular , Imunidade Humoral , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Vacinação
6.
Virol J ; 20(1): 167, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507719

RESUMO

Since SARS-CoV-2 was first reported in late 2019, multiple variations of the original virus have emerged. Each variant harbors accumulations of mutations, particularly within the spike glycoprotein, that are associated with increased viral transmissibility and escape immunity. The different mutations in the spike protein of different variants shape the subsequent antibody and T cell responses, such that exposure to different spike proteins can result in reduced or enhanced responses to heterologous variants further down the line. Globally, people have been exposed and re-exposed to multiple variations of the Ancestral strain, including the five variants of concerns. Studies have shown that the protective immune response of an individual is influenced by which strain or combination of strains they are exposed to. The initial exposure to a specific strain may also shape their subsequent immune patterns and response to later infections with a heterologous virus. Most immunological observations were carried out early during the pandemic when the Ancestral strain was circulating. However, SARS-CoV-2 variants exhibit varying patterns of disease severity, waning immunity, immune evasion and sensitivity to therapeutics. Here we investigated the cross-protection in hamsters previously infected with a variant of concern (VOC) and subsequently re-infected with a heterologous variant. We also determined if cross-protection and immunity were dependent on the specific virus to which the hamster was first exposed. We further profiled the host cytokine response induced by each SARS-CoV-2 variants as well as subsequent to re-infection. A comparative analysis of the three VOCs revealed that Alpha variant was the most pathogenic VOC to emerge. We showed that naturally acquired immunity protected hamsters from subsequent re-infection with heterologous SARS-CoV-2 variant, regardless which variant the animal was first exposed to. Our study supports observations that heterologous infection of different SARS-CoV-2 variants do not exacerbate disease in subsequent re-infections. The continual emergence of new SARS-CoV-2 variants mandates a better understanding of cross-protection and immune imprinting in infected individuals. Such information is essential to guide vaccine strategy and public policy to emerging SARS-CoV-2 VOCs and future novel pandemic coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , Proteção Cruzada , Reinfecção , Imunidade Adaptativa , Glicoproteína da Espícula de Coronavírus/genética
7.
Proc Natl Acad Sci U S A ; 117(29): 17221-17227, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32631992

RESUMO

Immunity to influenza viruses can be long-lived, but reinfections with antigenically distinct viral strains and subtypes are common. Reinfections can boost antibody responses against viral strains first encountered in childhood through a process termed "original antigenic sin." It is unknown how initial childhood exposures affect the induction of antibodies against the hemagglutinin (HA) stalk domain of influenza viruses. This is an important consideration since broadly reactive HA stalk antibodies can protect against infection, and universal vaccine platforms are being developed to induce these antibodies. Here we show that experimentally infected ferrets and naturally infected humans establish strong "immunological imprints" against HA stalk antigens first encountered during primary influenza virus infections. We found that HA stalk antibodies are surprisingly boosted upon subsequent infections with antigenically distinct influenza A virus subtypes. Paradoxically, these heterosubtypic-boosted HA stalk antibodies do not bind efficiently to the boosting influenza virus strain. Our results demonstrate that an individual's HA stalk antibody response is dependent on the specific subtype of influenza virus that they first encounter early in life. We propose that humans are susceptible to heterosubtypic influenza virus infections later in life since these viruses boost HA stalk antibodies that do not bind efficiently to the boosting antigen.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Furões , Hemaglutininas , Humanos , Imunização Secundária , Imunoglobulina G/sangue , Proteínas Recombinantes
8.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728266

RESUMO

Memory B cells (MBCs) are key determinants of the B cell response to influenza virus infection and vaccination, but the effect of different forms of influenza antigen exposure on MBC populations has received little attention. We analyzed peripheral blood mononuclear cells and plasma collected following human H3N2 influenza infection to investigate the relationship between hemagglutinin-specific antibody production and changes in the size and character of hemagglutinin-reactive MBC populations. Infection produced increased concentrations of plasma IgG reactive to the H3 head of the infecting virus, to the conserved stalk, and to a broad chronological range of H3s consistent with original antigenic sin responses. H3-reactive IgG MBC expansion after infection included reactivity to head and stalk domains. Notably, expansion of H3 head-reactive MBC populations was particularly broad and reflected original antigenic sin patterns of IgG production. Findings also suggest that early-life H3N2 infection "imprints" for strong H3 stalk-specific MBC expansion. Despite the breadth of MBC expansion, the MBC response included an increase in affinity for the H3 head of the infecting virus. Overall, our findings indicate that H3-reactive MBC expansion following H3N2 infection is consistent with maintenance of response patterns established early in life, but nevertheless includes MBC adaptation to the infecting virus.IMPORTANCE Rapid and vigorous virus-specific antibody responses to influenza virus infection and vaccination result from activation of preexisting virus-specific memory B cells (MBCs). Understanding the effects of different forms of influenza virus exposure on MBC populations is therefore an important guide to the development of effective immunization strategies. We demonstrate that exposure to the influenza hemagglutinin via natural infection enhances broad protection through expansion of hemagglutinin-reactive MBC populations that recognize head and stalk regions of the molecule. Notably, we show that hemagglutinin-reactive MBC expansion reflects imprinting by early-life infection and that this might apply to stalk-reactive, as well as to head-reactive, MBCs. Our findings provide experimental support for the role of MBCs in maintaining imprinting effects and suggest a mechanism by which imprinting might confer heterosubtypic protection against avian influenza viruses. It will be important to compare our findings to the situation after influenza vaccination.


Assuntos
Linfócitos B/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Memória Imunológica , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/imunologia , Estações do Ano , Anticorpos Antivirais/imunologia , Humanos , Imunoglobulina G/imunologia , Vírus da Influenza A Subtipo H1N1
9.
J Infect Dis ; 220(2): 228-232, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30815685

RESUMO

A human cytomegalovirus (HCMV) vaccine is urgently needed to protect against primary infection and enhance existing immunity in HCMV-infected individuals (HCMV+). Using sera from HCMV+ glycoprotein B/MF59 vaccine recipients prior to transplant, we investigated the composition of the immune response. Vaccination boosted preexisting humoral responses in our HCMV+ cohort but did not promote de novo responses against novel linear epitopes. This suggests that prior natural infection has a profound effect on shaping the antibody repertoire and subsequent response to vaccination ("original antigenic sin"). Thus, vaccination of HCMV+ may require strategies of epitope presentation distinct from those intended to prevent primary infection.


Assuntos
Infecções por Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Esqualeno/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Citomegalovirus/virologia , Método Duplo-Cego , Epitopos/imunologia , Humanos , Polissorbatos , Vacinação/métodos
10.
Zhonghua Yu Fang Yi Xue Za Zhi ; 53(10): 1070-1074, 2019 Oct 06.
Artigo em Chinês | MEDLINE | ID: mdl-31607059

RESUMO

Original antigenic sin may exist in the influenza virus infection or vaccination, which possibly reduces the protective efficacy in repeated influenza vaccination. This paper reviews the literature on the original antigenic sin and its influence in influenza vaccination, and interprets the possible mechanism of this phenomenon from the three aspects of influenza virus structure, humoral immunity and cellular immunity. A large number of studies have shown that original antigen sin has a negative impact on influenza vaccination, but the evidence disproveing this phenomenon also exist, so multi-center large-scale clinical trials should be conducted to provide evidence-based basis for reaearching whether original antigen sin exists and its effects. in order to provide reference for the development and update of noval influenza vaccines and its formulation of immunization strategies.


Assuntos
Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Anticorpos Antivirais , Humanos , Imunização , Vacinação
11.
Adv Exp Med Biol ; 1062: 241-250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29845537

RESUMO

Our understanding of how T cells respond to dengue virus has greatly advanced in the last decade but important questions still remain unanswered. Dengue virus infection elicits a broad anti-viral T cell response with NS3, NS4b and NS5 being the main targets for CD8+ T cells, which dominate the response while the structural proteins capsid, envelope and the secreted protein NS1 are the preferential targets for CD4+ T cells. Upon T cell activation during acute dengue infection, dengue-specific T cells acquire expression of the skin-homing marker cutaneous associated antigen (CLA) and they can be found at high frequencies in the skin of infected patients. This suggests that the skin represents an important site for the immuno surveillance of dengue virus. The immunoprotective role of skin-homing dengue-specific T cells, their potential involvement in pathological skin manifestations and their long-term persistence as tissue resident T cells to provide immediate onsite protection are open questions that we are currently investigating. The contribution of pre-existing dengue-specific T cells towards protective immunity and/or immunopathology during secondary dengue infection remains a major knowledge gap. The evidence supporting these opposing outcomes and our current understanding of the characteristics of the human T cell response to dengue virus will be discussed.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Animais , Dengue/virologia , Vírus da Dengue/genética , Humanos , Ativação Linfocitária
12.
J Infect Dis ; 216(12): 1487-1500, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29029166

RESUMO

Background: Vaccine effectiveness (VE) estimates for 2015-2016 seasonal influenza vaccine are reported from Canada's Sentinel Practitioner Surveillance Network (SPSN). This season was characterized by a delayed 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) epidemic and concurrent influenza B(Victoria) virus activity. Potential influences on VE beyond antigenic match are explored, including viral genomic variation, birth cohort effects, prior vaccination, and epidemic period. Methods: VE was estimated by a test-negative design comparing the adjusted odds ratio for influenza test positivity among vaccinated compared to unvaccinated participants. Vaccine-virus relatedness was assessed by gene sequencing and hemagglutination inhibition assay. Results: Analyses included 596 influenza A(H1N1)pdm09 and 305 B(Victoria) cases and 926 test-negative controls. A(H1N1)pdm09 viruses were considered antigenically related to vaccine (unchanged since 2009), despite phylogenetic clustering within emerging clade 6B.1. The adjusted VE against A(H1N1)pdm09 was 43% (95% confidence interval [CI], 25%-57%). Compared to other age groups, VE against A(H1N1)pdm09 was lower for adults born during 1957-1976 (25%; 95% CI, -16%-51%). The VE against A(H1N1)pdm09 was also lower for participants consecutively vaccinated during both the current and prior seasons (41%; 95% CI, 18%-57%) than for those vaccinated during the current season only (75%; 95% CI, 45%-88%), and the VE among participants presenting in March-April 2016 (19%; 95% CI, -15%-44%) was lower than that among those presenting during January-February 2016 (62%; 95% CI, 44%-74%). The adjusted VE for B(Victoria) viruses was 54% (95% CI, 32%-68%), despite lineage-level mismatch to B(Yamagata) vaccine. The further variation in VE as observed for A(H1N1)pdm09 was not observed for B(Victoria). Conclusions: Influenza VE findings may require consideration of other agent-host and immuno-epidemiologic influences on vaccine performance beyond antigenic match, including viral genomic variation, repeat vaccination, birth (immunological) cohort effects, and potential within-season waning of vaccine protection.


Assuntos
Antígenos Virais/imunologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Variação Antigênica , Canadá/epidemiologia , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Imunização/métodos , Imunogenicidade da Vacina , Lactente , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza B/classificação , Vírus da Influenza B/genética , Vírus da Influenza B/imunologia , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Filogenia , Análise de Sequência de DNA , Homologia de Sequência , Resultado do Tratamento , Adulto Jovem
13.
Acta Virol ; 59(2): 166-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26104333

RESUMO

In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Influenza Aviária/imunologia , Influenza Humana/imunologia , Doenças das Aves Domésticas/imunologia , Animais , Patos , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Influenza A/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Doenças das Aves Domésticas/virologia
14.
Biomed Pharmacother ; 178: 117187, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39084082

RESUMO

Original antigenic sin (OAS) influences the immune response to subsequent infections with related variants following initial pathogen exposure. This phenomenon is characterized by cross-reactivity, which, although it may worsen infections, also provides a degree of protection against immune evasion caused by variations. This paradox complicates the development of creating universal vaccinations, as they frequently show diminished effectiveness against these emerging variants. This review aims to elucidate the diverse impacts of OAS on the immune response to various infections, emphasizing the complicated balance between beneficial and harmful outcomes. Moreover, we evaluate the influence of adjuvants and other variables on the extent of OAS, hence affecting the effectiveness of vaccines. Understanding the mechanisms of OAS that cause persistent infections and evasion of the immune system is crucial for the developing innovative vaccines. And it has significant potential for clinical applications.

15.
Cell Rep Med ; 5(1): 101360, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232694

RESUMO

The failure of the Staphylococcus aureus (SA) IsdB vaccine trial can be explained by the recall of non-protective immune imprints from prior SA exposure. Here, we investigate natural human SA humoral imprints to understand their broader impact on SA immunizations. We show that antibody responses against SA cell-wall-associated antigens (CWAs) are non-opsonic, while antibodies against SA toxins are neutralizing. Importantly, the protective characteristics of the antibody imprints accurately predict the failure of corresponding vaccines against CWAs and support vaccination against toxins. In passive immunization platforms, natural anti-SA human antibodies reduce the efficacy of the human monoclonal antibodies suvratoxumab and tefibazumab, consistent with the results of their respective clinical trials. Strikingly, in the absence of specific humoral memory responses, active immunizations are efficacious in both naive and SA-experienced mice. Overall, our study points to a practical and predictive approach to evaluate and develop SA vaccines based on pre-existing humoral imprint characteristics.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Vacinas Antiestafilocócicas , Vacinas , Animais , Humanos , Camundongos , Imunização , Staphylococcus aureus , Ensaios Clínicos como Assunto
16.
Front Immunol ; 15: 1339660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464527

RESUMO

Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic. The Omicron variant (B.1.1.529) was first discovered in November 2021 in specimens collected from Botswana, South Africa. Omicron has become the dominant variant worldwide, and several sublineages or subvariants have been identified recently. Compared to those of other mutants, the Omicron variant has the most highly expressed amino acid mutations, with almost 60 mutations throughout the genome, most of which are in the spike (S) protein, especially in the receptor-binding domain (RBD). These mutations increase the binding affinity of Omicron variants for the ACE2 receptor, and Omicron variants may also lead to immune escape. Despite causing milder symptoms, epidemiological evidence suggests that Omicron variants have exceptionally higher transmissibility, higher rates of reinfection and greater spread than the prototype strain as well as other preceding variants. Additionally, overwhelming amounts of data suggest that the levels of specific neutralization antibodies against Omicron variants decrease in most vaccinated populations, although CD4+ and CD8+ T-cell responses are maintained. Therefore, the mechanisms underlying Omicron variant evasion are still unclear. In this review, we surveyed the current epidemic status and potential immune escape mechanisms of Omicron variants. Especially, we focused on the potential roles of viral epitope mutations, antigenic drift, hybrid immunity, and "original antigenic sin" in mediating immune evasion. These insights might supply more valuable concise information for us to understand the spreading of Omicron variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Evasão da Resposta Imune/genética , Anticorpos , Pandemias
17.
Hum Vaccin Immunother ; 20(1): 2384192, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39149872

RESUMO

Immune imprinting is a phenomenon that stems from the fundamentals of immunological memory. Upon recurrent exposures to an evolving pathogen, the immune system must weigh the benefits of rapidly recalling established antibody repertoires with greater affinity to the initial variant or invest additional time and energy in producing de novo responses specific to the emerging variant. In this review, we delve into the mechanistic complexities of immune imprinting and its role in shaping subsequent immune responses, both de novo and recall, against rapidly evolving respiratory viruses such as influenza and coronaviruses. By exploring the duality of immune imprinting, we examine its potential to both enhance or hinder immune protection against disease, while emphasizing the role of host and viral factors. Finally, we explore how different vaccine platforms may affect immune imprinting and comment on vaccine strategies that can favor de novo variant-specific antibody responses.


Assuntos
Anticorpos Antivirais , Memória Imunológica , Humanos , Anticorpos Antivirais/imunologia , Animais , Vacinas Virais/imunologia
18.
Front Immunol ; 15: 1382911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807606

RESUMO

Introduction: COVID-19 vaccines are highly effective in inducing protective immunity. While the serum antibody response to COVID-19 vaccination has been studied in depth, our knowledge of the underlying plasmablast and memory B cell (Bmem) responses is still incomplete. Here, we determined the antibody and B cell response to COVID-19 vaccination in a naïve population and contrasted it with the response to a single influenza vaccination in a primed cohort. In addition, we analyzed the antibody and B cell responses against the four endemic human coronaviruses (HCoVs). Methods: Measurement of specific plasma IgG antibodies was combined with functional analyses of antibody-secreting plasmablasts and Bmems. SARS-CoV-2- and HCoV-specific IgG antibodies were quantified with an in-house bead-based multiplexed immunoassay. Results: The antibody and B cell responses to COVID-19 vaccination reflected the kinetics of a prime-boost immunization, characterized by a slow and moderate primary response and a faster and stronger secondary response. In contrast, the influenza vaccinees possessed robust immune memory for the vaccine antigens prior to vaccination, and the recall vaccination moderately boosted antibody production and Bmem responses. Antibody levels and Bmem responses waned several months after the 2nd COVID-19 vaccination, but were restored upon the 3rd vaccination. The COVID-19 vaccine-induced antibodies mainly targeted novel, non-cross-reactive S1 epitopes of the viral spike protein, while cross-reactive S2 epitopes were less immunogenic. Booster vaccination not only strongly enhanced neutralizing antibodies against an original SARS-CoV-2 strain, but also induced neutralizing antibodies against the Omicron BA.2 variant. We observed a 100% plasma antibody prevalence against the S1 subunits of HCoVs, which was not affected by vaccination. Discussion: Overall, by complementing classical serology with a functional evaluation of plasmablasts and memory B cells we provide new insights into the specificity of COVID-19 vaccine-induced antibody and B cell responses.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Reações Cruzadas , Imunidade Humoral , Imunoglobulina G , Células B de Memória , Plasmócitos , SARS-CoV-2 , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Células B de Memória/imunologia , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Masculino , Adulto , Reações Cruzadas/imunologia , Feminino , Plasmócitos/imunologia , Pessoa de Meia-Idade , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Vacinação , Vacinas contra Influenza/imunologia , Memória Imunológica/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Epitopos de Linfócito B/imunologia , Linfócitos B/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Cinética
19.
Microorganisms ; 12(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543668

RESUMO

Before the emergence of SARS-CoV-1, MERS-CoV, and most recently, SARS-CoV-2, four other coronaviruses (the alpha coronaviruses NL63 and 229E and the beta coronaviruses OC43 and HKU1) had already been circulating in the human population. These circulating coronaviruses all cause mild respiratory illness during the winter seasons, and most people are already infected in early life. Could antibodies and/or T cells, especially against the beta coronaviruses, have offered some form of protection against (severe) COVID-19 caused by infection with SARS-CoV-2? Related is the question of whether survivors of SARS-CoV-1 or MERS-CoV would be relatively protected against SARS-CoV-2. More importantly, would humoral and cellular immunological memory generated during the SARS-CoV-2 pandemic, either by infection or vaccination, offer protection against future coronaviruses? Or rather than protection, could antibody-dependent enhancement have taken place, a mechanism by which circulating corona antibodies enhance the severity of COVID-19? Another related phenomenon, the original antigenic sin, would also predict that the effectiveness of the immune response to future coronaviruses would be impaired because of the reactivation of memory against irrelevant epitopes. The currently available evidence indicates that latter scenarios are highly unlikely and that especially cytotoxic memory T cells directed against conserved epitopes of human coronaviruses could at least offer partial protection against future coronaviruses.

20.
Cell Rep ; 43(8): 114567, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097927

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure histories become increasingly complex through original and variant-adapted vaccines and infections with viral variants. Upon exposure to the highly altered Omicron spike glycoprotein, pre-immunized individuals predominantly mount recall responses of Wuhan-Hu-1 (wild-type)-imprinted memory B (BMEM) cells mostly targeting conserved non-neutralizing epitopes, leading to diminished Omicron neutralization. We investigated the impact of imprinting in individuals double/triple vaccinated with a wild-type-strain-based mRNA vaccine who, thereafter, had two consecutive exposures to Omicron BA.1 spike (breakthrough infection followed by BA.1-adapted vaccine). We found that depletion of conserved epitope-recognizing antibodies using a wild-type spike bait results in strongly diminished BA.1 neutralization. Furthermore, spike-specific BMEM cells recognizing conserved epitopes are much more prevalent than BA.1-specific BMEM cells. Our observations suggest that imprinted BMEM cell recall responses limit the induction of strain-specific responses even after two consecutive BA.1 spike exposures. Vaccine adaptation strategies need to consider that prior SARS-CoV-2 infections and vaccinations may cause persistent immune imprinting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA