Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 54(10): 2231-2244.e6, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34555337

RESUMO

RNA interference (RNAi) is the major antiviral mechanism in plants and invertebrates, but the absence of detectable viral (v)siRNAs in mammalian cells upon viral infection has questioned the functional relevance of this pathway in mammalian immunity. We designed a series of peptides specifically targeting enterovirus A71 (EV-A71)-encoded protein 3A, a viral suppressor of RNAi (VSR). These peptides abrogated the VSR function of EV-A71 in infected cells and resulted in the accumulation of vsiRNAs and reduced viral replication. These vsiRNAs were functional, as evidenced by RISC-loading and silencing of target RNAs. The effects of VSR-targeting peptides (VTPs) on infection with EV-A71 as well as another enterovirus, Coxsackievirus-A16, were ablated upon deletion of Dicer1 or AGO2, core components of the RNAi pathway. In vivo, VTP treatment protected mice against lethal EV-A71 challenge, with detectable vsiRNAs. Our findings provide evidence for the functional relevance of RNAi in mammalian immunity and present a therapeutic strategy for infectious disease.


Assuntos
Antivirais/farmacologia , Infecções por Enterovirus/virologia , RNA Viral/antagonistas & inibidores , Animais , Chlorocebus aethiops , Enterovirus Humano A , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/antagonistas & inibidores , Células Vero , Replicação Viral/efeitos dos fármacos
2.
EMBO J ; 41(11): e109902, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35343600

RESUMO

Induction and suppression of antiviral RNA interference (RNAi) has been observed in mammals during infection with at least seven distinct RNA viruses, including some that are pathogenic in humans. However, while the cell-autonomous immune response mediated by antiviral RNAi is gradually being recognized, little is known about systemic antiviral RNAi in mammals. Furthermore, extracellular vesicles (EVs) also function in viral signal spreading and host immunity. Here, we show that upon antiviral RNAi activation, virus-derived small-interfering RNAs (vsiRNAs) from Nodamura virus (NoV), Sindbis virus (SINV), and Zika virus (ZIKV) enter the murine bloodstream via EVs for systemic circulation. vsiRNAs in the EVs are biologically active, since they confer RNA-RNA homology-dependent antiviral activity in both cultured cells and infant mice. Moreover, we demonstrate that vaccination with a live-attenuated virus, rendered deficient in RNAi suppression, induces production of stably maintained vsiRNAs and confers protective immunity against virus infection in mice. This suggests that vaccination with live-attenuated VSR (viral suppressor of RNAi)-deficient mutant viruses could be a new strategy to induce immunity.


Assuntos
Vesículas Extracelulares , Infecção por Zika virus , Zika virus , Animais , Antivirais , Vesículas Extracelulares/genética , Humanos , Mamíferos/genética , Camundongos , Interferência de RNA , RNA de Cadeia Dupla , RNA Interferente Pequeno/genética , Zika virus/genética , Infecção por Zika virus/genética , Infecção por Zika virus/prevenção & controle
3.
EMBO J ; 41(18): e110521, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35929182

RESUMO

Viruses often usurp host machineries for their amplification, but it remains unclear if hosts may subvert virus proteins to regulate viral proliferation. Here, we show that the 17K protein, an important virulence factor conserved in barley yellow dwarf viruses (BYDVs) and related poleroviruses, is phosphorylated by host GRIK1-SnRK1 kinases, with the phosphorylated 17K (P17K) capable of enhancing the abundance of virus-derived small interfering RNAs (vsiRNAs) and thus antiviral RNAi. Furthermore, P17K interacts with barley small RNA-degrading nuclease 1 (HvSDN1) and impedes HvSDN1-catalyzed vsiRNA degradation. Additionally, P17K weakens the HvSDN1-HvAGO1 interaction, thus hindering HvSDN1 from accessing and degrading HvAGO1-carried vsiRNAs. Importantly, transgenic expression of 17K phosphomimetics (17K5D ), or genome editing of SDN1, generates stable resistance to BYDV through elevating vsiRNA abundance. These data validate a novel mechanism that enhances antiviral RNAi through host subversion of a viral virulence protein to inhibit SDN1-catalyzed vsiRNA degradation and suggest new ways for engineering BYDV-resistant crops.


Assuntos
Hordeum , Antivirais , Hordeum/genética , Hordeum/metabolismo , Doenças das Plantas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência
4.
J Virol ; 96(4): e0177821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34908449

RESUMO

RNA interference (RNAi) functions as the major host antiviral defense in insects, while less is understood about how to utilize antiviral RNAi in controlling viral infection in insects. Enoxacin belongs to the family of synthetic antibacterial compounds based on a fluoroquinolone skeleton that has been previously found to enhance RNAi in mammalian cells. In this study, we show that enoxacin efficiently inhibited viral replication of Drosophila C virus (DCV) and cricket paralysis virus (CrPV) in cultured Drosophila cells. Enoxacin promoted the loading of Dicer-2-processed virus-derived small interfering RNA (siRNA) into the RNA-induced silencing complex, thereby enhancing the antiviral RNAi response in infected cells. Moreover, enoxacin treatment elicited RNAi-dependent in vivo protective efficacy against DCV or CrPV challenge in adult fruit flies. In addition, enoxacin also inhibited the replication of flaviviruses, including dengue virus and Zika virus, in Aedes mosquito cells in an RNAi-dependent manner. Together, our findings demonstrate that enoxacin can enhance RNAi in insects, and enhancing RNAi by enoxacin is an effective antiviral strategy against diverse viruses in insects, which may be exploited as a broad-spectrum antiviral agent to control the vector transmission of arboviruses or viral diseases in insect farming. IMPORTANCE RNAi has been widely recognized as one of the most broadly acting and robust antiviral mechanisms in insects. However, the application of antiviral RNAi in controlling viral infections in insects is less understood. Enoxacin is a fluoroquinolone compound that was previously found to enhance RNAi in mammalian cells, while its RNAi-enhancing activity has not been assessed in insects. Here, we show that enoxacin treatment inhibited viral replication of DCV and CrPV in Drosophila cells and adult fruit flies. Enoxacin promoted the loading of Dicer-generated virus-derived siRNA into the Ago2-incorporated RNA-induced silencing complex and in turn strengthened the antiviral RNAi response in the infected cells. Moreover, enoxacin displayed effective RNAi-dependent antiviral effects against flaviviruses, such as dengue virus and Zika virus, in mosquito cells. This study is the first to demonstrate that enhancing RNAi by enoxacin elicits potent antiviral effects against diverse viruses in insects.


Assuntos
Antivirais/farmacologia , Enoxacino/farmacologia , Vírus de Insetos/efeitos dos fármacos , Interferência de RNA/efeitos dos fármacos , Aedes , Animais , Linhagem Celular , Drosophila , Flavivirus/classificação , Flavivirus/efeitos dos fármacos , Vírus de Insetos/classificação , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Replicação Viral/efeitos dos fármacos
5.
J Exp Bot ; 74(21): 6760-6772, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37603044

RESUMO

Antiviral RNAi is the main protective measure employed by plants in the fight against viruses. The main steps of this process have been clarified in recent years, primarily relying on the extensive genetic resources of Arabidopsis thaliana. Our knowledge of viral diseases of crops, however, is still limited, mainly due to the fact that A. thaliana is a non-host for many agriculturally important viruses. In contrast, Nicotiana benthamiana has an unparalleled susceptibility to viruses and, since it belongs to the Solanaceae family, it is considered an adequate system for modeling infectious diseases of crops such as tomatoes. We used a series of N. benthamiana mutants created by genome editing to analyze the RNAi response elicited by the emerging tomato pathogen, pepino mosaic virus (PepMV). We uncovered hierarchical roles of several Argonaute proteins (AGOs) in anti-PepMV defense, with the predominant contribution of AGO2. Interestingly, the anti-PepMV activities of AGO1A, AGO5, and AGO10 only become apparent when AGO2 is mutated. Taken together, our results prove that hierarchical actions of several AGOs are needed for the plant to build effective anti-PepMV resistance. The genetic resources created here will be valuable assets for analyzing RNAi responses triggered by other agriculturally important pathogenic viruses.


Assuntos
Arabidopsis , Solanum lycopersicum , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Nicotiana/metabolismo , Interferência de RNA , Solanum lycopersicum/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Antivirais , Doenças das Plantas/genética
6.
Mol Ther ; 30(5): 2005-2023, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35038579

RESUMO

Despite rapid development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant modalities to curb the pandemic by directly attacking the virus on a genetic level remain highly desirable and are urgently needed. Here we comprehensively illustrate the capacity of adeno-associated virus (AAV) vectors co-expressing a cocktail of three short hairpin RNAs (shRNAs; RNAi triggers) directed against the SARS-CoV-2 RdRp and N genes as versatile and effective antiviral agents. In cultured monkey cells and human gut organoids, our most potent vector, SAVIOR (SARS virus repressor), suppressed SARS-CoV-2 infection to background levels. Strikingly, in control experiments using single shRNAs, multiple SARS-CoV-2 escape mutants quickly emerged from infected cells within 24-48 h. Importantly, such adverse viral adaptation was fully prevented with the triple-shRNA AAV vector even during long-term cultivation. In addition, AAV-SAVIOR efficiently purged SARS-CoV-2 in a new model of chronically infected human intestinal cells. Finally, intranasal AAV-SAVIOR delivery using an AAV9 capsid moderately diminished viral loads and/or alleviated disease symptoms in hACE2-transgenic or wild-type mice infected with human or mouse SARS-CoV-2 strains, respectively. Our combinatorial and customizable AAV/RNAi vector complements ongoing global efforts to control the coronavirus disease 2019 (COVID-19) pandemic and holds great potential for clinical translation as an original and flexible preventive or therapeutic antiviral measure.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Antivirais , COVID-19/prevenção & controle , Dependovirus , Camundongos , Pandemias , Interferência de RNA , RNA Interferente Pequeno/genética , SARS-CoV-2/genética
7.
J Virol ; 94(3)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31694940

RESUMO

RNA interference (RNAi) is a conserved antiviral immune defense in eukaryotes, and numerous viruses have been found to encode viral suppressors of RNAi (VSRs) to counteract antiviral RNAi. Alphaviruses are a large group of positive-stranded RNA viruses that maintain their transmission and life cycles in both mosquitoes and mammals. However, there is little knowledge about how alphaviruses antagonize RNAi in both host organisms. In this study, we identified that Semliki Forest virus (SFV) capsid protein can efficiently suppress RNAi in both insect and mammalian cells by sequestrating double-stranded RNA and small interfering RNA. More importantly, when the VSR activity of SFV capsid was inactivated by reverse genetics, the resulting VSR-deficient SFV mutant showed severe replication defects in mammalian cells, which could be rescued by blocking the RNAi pathway. Besides, capsid protein of Sindbis virus also inhibited RNAi in cells. Together, our findings show that SFV uses capsid protein as VSR to antagonize RNAi in infected mammalian cells, and this mechanism is probably used by other alphaviruses, which shed new light on the knowledge of SFV and alphavirus.IMPORTANCE Alphaviruses are a genus of positive-stranded RNA viruses and include numerous important human pathogens, such as Chikungunya virus, Ross River virus, Western equine encephalitis virus, etc., which create the emerging and reemerging public health threat worldwide. RNA interference (RNAi) is one of the most important antiviral mechanisms in plants and insects. Accumulating evidence has provided strong support for the existence of antiviral RNAi in mammals. In response to antiviral RNAi, viruses have evolved to encode viral suppressors of RNAi (VSRs) to antagonize the RNAi pathway. It is unclear whether alphaviruses encode VSRs that can suppress antiviral RNAi during their infection in mammals. In this study, we first uncovered that capsid protein encoded by Semliki Forest virus (SFV), a prototypic alphavirus, had a potent VSR activity that can antagonize antiviral RNAi in the context of SFV infection in mammalian cells, and this mechanism is probably used by other alphaviruses.


Assuntos
Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Interferência de RNA/fisiologia , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/metabolismo , Animais , Capsídeo , Linhagem Celular , Vírus Chikungunya/fisiologia , Drosophila , Vírus da Encefalite Equina do Oeste/fisiologia , Células HEK293 , Humanos , RNA Interferente Pequeno , RNA Viral , Sindbis virus/fisiologia , Vírion , Replicação Viral
8.
J Gen Virol ; 101(10): 1069-1078, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32667281

RESUMO

RNA interference (RNAi) is a potent antiviral defence mechanism in eukaryotes, and numerous viruses have been found to encode viral suppressors of RNAi (VSRs). Coxsackievirus B3 (CVB3) belongs to the genus Enterovirus in the family Picornaviridae, and has been reported to be a major causative pathogen for viral myocarditis. Despite the importance of CVB3, it is unclear whether CVB3 can also encode proteins that suppress RNAi. Here, we showed that the CVB3 nonstructural protein 3A suppressed RNAi triggered by either small hairpin RNAs (shRNAs) or small interfering RNAs (siRNAs) in mammalian cells. We further uncovered that CVB3 3A interacted directly with double-stranded RNAs (dsRNAs) and siRNAs in vitro. Through mutational analysis, we found that the VSR activity of CVB3 3A was significantly reduced by mutations of D24A/L25A/L26A, Y37A/C38A and R60A in conserved residues. In addition, the 3A protein encoded by coxsackievirus B5 (CVB5), another member of Enterovirus, also showed VSR activity. Taken together, our findings showed that CVB3 3A has in vitro VSR activity, thereby providing insights into the pathogenesis of CVB3 and other enteroviruses.


Assuntos
Enterovirus Humano B/fisiologia , Interferência de RNA , Proteínas Virais/metabolismo , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidade , Células HEK293 , Humanos , Mutação Puntual , Multimerização Proteica , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , Proteínas Virais/química , Proteínas Virais/genética
9.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950414

RESUMO

RNA interference (RNAi) is a widespread antiviral mechanism triggered by virus-produced double-stranded RNAs (dsRNAs). In Caenorhabditis elegans, antiviral RNAi involves a RIG-I-like RNA helicase, termed DRH-1 (dicer related RNA helicase 1), that is not required for classical RNAi triggered by artificial dsRNA. Currently, whether antiviral RNAi in C. elegans involves novel factors that are dispensable for classical RNAi remains an open question. To address this question, we designed and carried out a genetic screen that aims to identify novel genes involved in worm antiviral RNAi. By introducing extra copies of known antiviral RNAi genes into the reporter worms, we managed to reject alleles derived from 4 known antiviral RNAi genes, including the DRH-1 coding gene, during the screen. Our genetic screen altogether identified 25 alleles, which were assigned to 11 candidate genes and 2 known antiviral RNAi genes through genetic complementation tests. Using a mapping-by-sequencing strategy, we identified one of the candidate genes as rsd-6, a gene that helps maintain genome integrity through an endogenous gene-silencing pathway but was not known to be required for antiviral RNAi. More importantly, we found that two of the candidate genes are required for antiviral RNAi targeting Orsay virus, a natural viral pathogen of C. elegans, but dispensable for classical RNAi. Since drh-1 is so far the only antiviral RNAi gene not required for classical RNAi, we believe that our genetic screen led to identification of novel worm genes that may target virus-specific features to function in RNAi.IMPORTANCE In nematode worms, drh-1 detects virus-produced double-stranded RNA (dsRNA), thereby specifically contributing to antiviral RNA silencing. To identify drh-1-like genes with dedicated function in antiviral RNAi, we recently carried out a genetic screen that was designed to automatically reject all alleles derived from 4 known antiviral silencing genes, including drh-1 Of the 11 candidate genes identified, we found two of them to be required for antiviral silencing targeting a natural viral pathogen of C. elegans but not for classical RNA silencing triggered by artificial dsRNA. We believe that these two genes are novel components of worm antiviral RNAi, considering the fact that drh-1 is the only known antiviral RNAi gene that is dispensable for classical RNAi. This genetic screen also identified rsd-6, a gene that maintains genome integrity under unfavorable conditions, as a key regulator of worm antiviral silencing, demonstrating an interplay between antiviral immunity and genome integrity maintenance.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Interferência de RNA , Transgenes/genética , Animais , Caenorhabditis elegans/virologia , Regulação da Expressão Gênica , Testes Genéticos/métodos , Genoma , Vírus de RNA/genética , RNA Interferente Pequeno/genética , RNA Viral/genética
10.
Proc Natl Acad Sci U S A ; 113(29): E4218-27, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27357659

RESUMO

Since its discovery, RNA interference has been identified as involved in many different cellular processes, and as a natural antiviral response in plants, nematodes, and insects. In insects, the small interfering RNA (siRNA) pathway is the major antiviral response. In recent years, the Piwi-interacting RNA (piRNA) pathway also has been implicated in antiviral defense in mosquitoes infected with arboviruses. Using Drosophila melanogaster and an array of viruses that infect the fruit fly acutely or persistently or are vertically transmitted through the germ line, we investigated in detail the extent to which the piRNA pathway contributes to antiviral defense in adult flies. Following virus infection, the survival and viral titers of Piwi, Aubergine, Argonaute-3, and Zucchini mutant flies were similar to those of wild type flies. Using next-generation sequencing of small RNAs from wild type and siRNA mutant flies, we showed that no viral-derived piRNAs were produced in fruit flies during different types of viral infection. Our study provides the first evidence, to our knowledge, that the piRNA pathway does not play a major role in antiviral defense in adult Drosophila and demonstrates that viral-derived piRNA production depends on the biology of the host-virus combination rather than being part of a general antiviral process in insects.


Assuntos
Drosophila melanogaster/imunologia , Drosophila melanogaster/virologia , Interações Hospedeiro-Patógeno , RNA Interferente Pequeno/genética , Vírus/genética , Animais , Interferência de RNA , Vírus/patogenicidade
11.
FEBS J ; 291(2): 208-216, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652199

RESUMO

Mammals have potent innate immune systems that work together to fight against a variety of distinct viruses. In addition to interferon (IFN) response, which has been intensively studied, antiviral RNA interference (RNAi) is gradually being studied. However, previous studies indicated low Dicer activity on double-stranded RNA (dsRNA) substrates in vitro and that IFN response masks or inhibits antiviral RNAi in mammals. Therefore, whether or not the RNAi is functional for antiviral response in mammalian somatic cells is still an ongoing area of research. In this review, we will present the current advances in antiviral RNAi in mammals and focus on three fundamental questions critical to the intense debate about whether RNAi can function as an innate antiviral immunity in mammals.


Assuntos
Vírus , Animais , Interferência de RNA , RNA Interferente Pequeno/genética , Vírus/genética , RNA de Cadeia Dupla/genética , Mamíferos/genética
12.
Adv Virus Res ; 115: 135-158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37173064

RESUMO

Viruses continue to pose a public health threat raising the need for effective management strategies. Currently existing antiviral therapeutics are often specific to only a single viral species, and resistance to the therapeutic can often arise, and therefore new therapeutics are needed. The C. elegans-Orsay virus system offers a powerful platform for studying RNA virus-host interactions that could ultimately lead to novel targets for antiviral therapy. The relative simplicity of C. elegans, the well-established experimental tools, and its extensive evolutionary conservation of genes and pathways with mammals are key features of this model. Orsay virus, a bisegmented positive sense RNA virus, is a natural pathogen of C. elegans. Orsay virus infection can be studied in a multicellular organismal context, overcoming some of the limitations inherent to tissue culture-based systems. Moreover, compared to mice, the rapid generation time of C. elegans enables robust and facile forward genetics. This review aims to summarize studies that have laid the foundation for the C. elegans-Orsay virus experimental system, experimental tools, and key examples of C. elegans host factors that impact Orsay virus infection that have evolutionarily conserved function in mammalian virus infection.


Assuntos
Nodaviridae , Vírus de RNA , Viroses , Animais , Camundongos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Interações entre Hospedeiro e Microrganismos , Interferência de RNA , Nodaviridae/genética , Interações Hospedeiro-Patógeno/genética , Mamíferos
13.
Microbiol Mol Biol Rev ; 87(2): e0003522, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37052496

RESUMO

Immune recognition of viral genome-derived double-stranded RNA (dsRNA) molecules and their subsequent processing into small interfering RNAs (siRNAs) in plants, invertebrates, and mammals trigger specific antiviral immunity known as antiviral RNA interference (RNAi). Immune sensing of viral dsRNA is sequence-independent, and most regions of viral RNAs are targeted by virus-derived siRNAs which extensively overlap in sequence. Thus, the high mutation rates of viruses do not drive immune escape from antiviral RNAi, in contrast to other mechanisms involving specific virus recognition by host immune proteins such as antibodies and resistance (R) proteins in mammals and plants, respectively. Instead, viruses actively suppress antiviral RNAi at various key steps with a group of proteins known as viral suppressors of RNAi (VSRs). Some VSRs are so effective in virus counter-defense that potent inhibition of virus infection by antiviral RNAi is undetectable unless the cognate VSR is rendered nonexpressing or nonfunctional. Since viral proteins are often multifunctional, resistance phenotypes of antiviral RNAi are accurately defined by those infection defects of VSR-deletion mutant viruses that are efficiently rescued by host deficiency in antiviral RNAi. Here, we review and discuss in vivo infection defects of VSR-deficient RNA and DNA viruses resulting from the actions of host antiviral RNAi in model systems.


Assuntos
Antivirais , Vírus de RNA , Animais , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Vírus de DNA/genética , Vírus de DNA/metabolismo , Vírus de RNA/genética , Mamíferos/genética , Mamíferos/metabolismo
14.
Cell Rep ; 42(5): 112441, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37104090

RESUMO

RNA interference (RNAi) is a well-established antiviral immunity. However, for mammalian somatic cells, antiviral RNAi becomes evident only when viral suppressors of RNAi (VSRs) are disabled by mutations or VSR-targeting drugs, thereby limiting its scope as a mammalian immunity. We find that a wild-type alphavirus, Semliki Forest virus (SFV), triggers the Dicer-dependent production of virus-derived small interfering RNAs (vsiRNAs) in both mammalian somatic cells and adult mice. These SFV-vsiRNAs are located at a particular region within the 5' terminus of the SFV genome, Argonaute loaded, and active in conferring effective anti-SFV activity. Sindbis virus, another alphavirus, also induces vsiRNA production in mammalian somatic cells. Moreover, treatment with enoxacin, an RNAi enhancer, inhibits SFV replication dependent on RNAi response in vitro and in vivo and protects mice from SFV-induced neuropathogenesis and lethality. These findings show that alphaviruses trigger the production of active vsiRNA in mammalian somatic cells, highlighting the functional importance and therapeutic potential of antiviral RNAi in mammals.


Assuntos
Infecções por Alphavirus , Antivirais , Animais , Camundongos , Interferência de RNA , Linhagem Celular , RNA Interferente Pequeno/genética , Vírus da Floresta de Semliki/genética , Sindbis virus/genética , Mamíferos/genética , Replicação Viral
15.
Cell Rep ; 39(12): 110976, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732126

RESUMO

dsRNA sensing triggers antiviral responses against RNA and DNA viruses in diverse eukaryotes. In Drosophila, Invertebrate iridescent virus 6 (IIV-6), a large DNA virus, triggers production of small interfering RNAs (siRNAs) by the dsRNA sensor Dicer-2. Here, we show that host RNA polymerase II (RNAPII) bidirectionally transcribes specific AT-rich regions of the IIV-6 DNA genome to generate dsRNA. Both replicative and naked IIV-6 genomes trigger production of dsRNA in Drosophila cells, implying direct sensing of invading DNA. Loquacious-PD, a Dicer-2 co-factor essential for the biogenesis of endogenous siRNAs, is dispensable for processing of IIV-6-derived dsRNAs, which suggests that they are distinct. Consistent with this finding, inhibition of the RNAPII co-factor P-TEFb affects the synthesis of endogenous, but not virus-derived, dsRNA. Altogether, our results suggest that a non-canonical RNAPII complex recognizes invading viral DNA to synthesize virus-derived dsRNA, which activates the antiviral siRNA pathway in Drosophila.


Assuntos
DNA Viral , Drosophila , Animais , Antivirais , Vírus de DNA/genética , Drosophila/metabolismo , Iridovirus , Interferência de RNA , RNA Polimerase II/metabolismo , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo
16.
Insects ; 13(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35447820

RESUMO

Insect-specific viruses (ISV) are one of the most promising agents for the biological control of insects. The green leafhopper, Cicadella viridis (Linnaeus), is an significant pest in agriculture, and causes economic losses to fruit trees, willows, and field crops. As a representative species of the large family Cicadellidae, ISVs in C. viridis have never been studied, to date. In this study, the full genome sequences of two ISVs, named Cicadella viridis iflavirus1 (CvIfV1), and Cicadella viridis nido-like virus 1 (CvNiLV1), were revealed using a metatranscriptomic approach. A homology search and phylogenetic analysis indicated that CvIfV1 is a new member in the family Iflaviridae (genus Iflavirus) with a typical iflavirus genome organization, whereas CvNiLV1 belongs to the unclassified clade/family of the order Nidovirales. In addition, analysis of virus-derived small interfering RNAs (vsiRNAs) was performed to investigate the antiviral RNA interference (RNAi) response of C. viridis. The vsiRNAs exhibit typical patterns produced by host siRNA-mediated antiviral immunity, including a preference of 21-nt vsiRNAs derived equally from the sense and antisense genomic strands, and a strong A/U bias in the 5'-terminus of the viral genomes. Our study provides valuable information for ISVs in leafhoppers for the first time, which might prove useful in the control of C. viridis in future.

17.
Front Microbiol ; 13: 859420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558132

RESUMO

Influenza A virus (IAV), one of the most prevalent respiratory diseases, causes pandemics around the world. The multifunctional non-structural protein 1 (NS1) of IAV is a viral antagonist that suppresses host antiviral response. However, the mechanism by which NS1 modulates the RNA interference (RNAi) pathway remains unclear. Here, we identified interactions between NS1 proteins of Influenza A/PR8/34 (H1N1; IAV-PR8) and Influenza A/WSN/1/33 (H1N1; IAV-WSN) and Dicer's cofactor TAR-RNA binding protein (TRBP). We found that the N-terminal RNA binding domain (RBD) of NS1 and the first two domains of TRBP protein mediated this interaction. Furthermore, two amino acid residues (Arg at position 38 and Lys at position 41) in NS1 were essential for the interaction. We generated TRBP knockout cells and found that NS1 instead of NS1 mutants (two-point mutations within NS1, R38A/K41A) inhibited the process of microRNA (miRNA) maturation by binding with TRBP. PR8-infected cells showed masking of short hairpin RNA (shRNA)-mediated RNAi, which was not observed after mutant virus-containing NS1 mutation (R38A/K41A, termed PR8/3841) infection. Moreover, abundant viral small interfering RNAs (vsiRNAs) were detected in vitro and in vivo upon PR8/3841 infection. We identify, for the first time, the interaction between NS1 and TRBP that affects host RNAi machinery.

18.
mSphere ; 7(1): e0100321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171691

RESUMO

Arboviruses transmitted by mosquitoes are responsible for the death of millions of people each year. In addition to arboviruses, many insect-specific viruses (ISVs) have been discovered in mosquitoes in the last decade. ISVs, in contrast to arboviruses transmitted by mosquitoes to vertebrates, cannot replicate in vertebrate cells even when they are evolutionarily closely related to arboviruses. The alphavirus genus includes many arboviruses, although only a few ISVs have been discovered from this genus so far. Here, we investigate the interactions of a recently isolated insect-specific alphavirus, Agua Salud alphavirus (ASALV), with its mosquito host. RNA interference (RNAi) is one of the essential antiviral responses against arboviruses, although there is little knowledge on the interactions of RNAi with ISVs. Through the knockdown of transcripts of the different key RNAi pathway (small interfering RNA [siRNA], microRNA [miRNA], and P-element-induced wimpy testis [PIWI]-interacting RNA [piRNA]) proteins, we show the antiviral role of Ago2 (siRNA), Ago1 (miRNA), and Piwi4 proteins against ASALV in Aedes aegypti-derived cells. ASALV replication was increased in Dicer2 and Ago2 knockout cells, confirming the antiviral role of the siRNA pathway. In infected cells, mainly ASALV-specific siRNAs are produced, while piRNA-like small RNAs, with the characteristic nucleotide bias resulting from ping-pong amplification, are produced only in Dicer2 knockout cells. Taken together, ASALV interactions with the mosquito RNAi response differ from those of arthropod-borne alphaviruses in some aspects, although they also share some commonalities. Further research is needed to understand whether the identified differences can be generalized to other insect-specific alphaviruses. IMPORTANCE Mosquitoes are efficient vectors for many arboviruses that cause emergent infectious diseases in humans. Many insect-specific viruses (ISVs) that can infect mosquitoes but cannot infect vertebrates have been discovered in the last decade. ISVs have attracted great attention due to their potential use in mosquito or arbovirus control, by either decreasing mosquito fitness or restricting arbovirus replication and transmission to humans. However, ISV-mosquito interactions are not well understood. RNA interference (RNAi) is the most important innate immune response against many arboviruses, while it is unknown if it is antiviral against ISVs. Here, we investigate in detail the antiviral effect of the RNAi response in mosquitoes against an ISV for the first time. Using a recently isolated insect-specific alphavirus, we show that the regulation of virus replication was different from that for arthropod-borne alphaviruses despite some similarities. The differences in mosquito-virus interactions could drive the different transmission modes, which could eventually drive the evolution of arboviruses. Hence, an understanding of mosquito-ISV interactions can shed light on the ecology and evolution of both ISVs and the medically important arboviruses.


Assuntos
Aedes , Alphavirus , Arbovírus , Vírus de Insetos , MicroRNAs , Aedes/genética , Aedes/virologia , Alphavirus/genética , Animais , Antivirais , Arbovírus/fisiologia , Linhagem Celular , Mosquitos Vetores/virologia , Interferência de RNA , RNA de Cadeia Dupla , RNA Interferente Pequeno/genética
19.
Virol Sin ; 37(4): 569-580, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35533808

RESUMO

RNA interference (RNAi) is an intrinsic antiviral immune mechanism conserved in diverse eukaryotic organisms. However, the mechanism by which antiviral RNAi in mammals is regulated is poorly understood. In this study, we uncovered that the E3 ubiquitin ligase STIP1 homology and U-box-containing protein 1 (STUB1) was a new regulator of the RNAi machinery in mammals. We found that STUB1 interacted with and ubiquitinated AGO2, and targeted it for degradation in a chaperon-dependent manner. STUB1 promoted the formation of Lys48 (K48)-linked polyubiquitin chains on AGO2, and facilitated AGO2 degradation through ubiquitin-proteasome system. In addition to AGO2, STUB1 also induced the protein degradation of AGO1, AGO3 and AGO4. Further investigation revealed that STUB1 also regulated Dicer's ubiquitination via K48-linked polyubiquitin and induced the degradation of Dicer as well as its specialized form, termed antiviral Dicer (aviDicer) that expresses in mammalian stem cells. Moreover, we found that STUB1 deficiency up-regulated Dicer and AGO2, thereby enhancing the RNAi response and efficiently inhibiting viral replication in mammalian cells. Using the newborn mouse model of Enterovirus A71 (EV-A71), we confirmed that STUB1 deficiency enhanced the virus-derived siRNAs production and antiviral RNAi, which elicited a potent antiviral effect against EV-A71 infection in vivo. In summary, our findings uncovered that the E3 ubiquitin ligase STUB1 was a general regulator of the RNAi machinery by targeting Dicer, aviDicer and AGO1-4. Moreover, STUB1 regulated the RNAi response through mediating the abundance of Dicer and AGO2 during viral infection, thereby providing novel insights into the regulation of antiviral RNAi in mammals.


Assuntos
Antivirais , Poliubiquitina , Animais , Proteínas Argonautas , RNA Helicases DEAD-box , Mamíferos/metabolismo , Camundongos , Poliubiquitina/genética , Poliubiquitina/metabolismo , Interferência de RNA , Ribonuclease III , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
20.
Viruses ; 13(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494454

RESUMO

Rubella virus (RuV) is the infectious agent of a series of birth defect diseases termed congenital rubella syndrome, which is a major public health concern all around the world. RNA interference (RNAi) is a crucial antiviral defense mechanism in eukaryotes, and numerous viruses have been found to encode viral suppressors of RNAi (VSRs) to evade antiviral RNAi response. However, there is little knowledge about whether and how RuV antagonizes RNAi. In this study, we identified that the RuV capsid protein is a potent VSR that can efficiently suppress shRNA- and siRNA-induced RNAi in mammalian cells. Moreover, the VSR activity of the RuV capsid is dependent on its dimerization and double-stranded RNA (dsRNA)-binding activity. In addition, ectopic expression of the RuV capsid can effectively rescue the replication defect of a VSR-deficient virus or replicon, implying that the RuV capsid can act as a VSR in the context of viral infection. Together, our findings uncover that RuV encodes a VSR to evade antiviral RNAi response, which expands our understanding of RuV-host interaction and sheds light on the potential therapeutic target against RuV.


Assuntos
Proteínas do Capsídeo/metabolismo , Interações Hospedeiro-Patógeno , Interferência de RNA , Vírus da Rubéola/patogenicidade , Animais , Capsídeo , Proteínas do Capsídeo/genética , Chlorocebus aethiops , Células HEK293 , Humanos , RNA de Cadeia Dupla , RNA Interferente Pequeno , Vírus da Rubéola/genética , Células Vero , Vírion , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA