Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893175

RESUMO

Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2/imunologia , Anticorpos de Domínio Único , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , COVID-19/imunologia , Camelídeos Americanos , Humanos , Camundongos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia
2.
Proc Natl Acad Sci U S A ; 117(45): 28046-28055, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33093202

RESUMO

An essential mechanism for severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection begins with the viral spike protein binding to the human receptor protein angiotensin-converting enzyme II (ACE2). Here, we describe a stepwise engineering approach to generate a set of affinity optimized, enzymatically inactivated ACE2 variants that potently block SARS-CoV-2 infection of cells. These optimized receptor traps tightly bind the receptor binding domain (RBD) of the viral spike protein and prevent entry into host cells. We first computationally designed the ACE2-RBD interface using a two-stage flexible protein backbone design process that improved affinity for the RBD by up to 12-fold. These designed receptor variants were affinity matured an additional 14-fold by random mutagenesis and selection using yeast surface display. The highest-affinity variant contained seven amino acid changes and bound to the RBD 170-fold more tightly than wild-type ACE2. With the addition of the natural ACE2 collectrin domain and fusion to a human immunoglobulin crystallizable fragment (Fc) domain for increased stabilization and avidity, the most optimal ACE2 receptor traps neutralized SARS-CoV-2-pseudotyped lentivirus and authentic SARS-CoV-2 virus with half-maximal inhibitory concentrations (IC50s) in the 10- to 100-ng/mL range. Engineered ACE2 receptor traps offer a promising route to fighting infections by SARS-CoV-2 and other ACE2-using coronaviruses, with the key advantage that viral resistance would also likely impair viral entry. Moreover, such traps can be predesigned for viruses with known entry receptors for faster therapeutic response without the need for neutralizing antibodies isolated from convalescent patients.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , Desenho de Fármacos , Engenharia de Proteínas/métodos , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Antivirais/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Mutação , Biblioteca de Peptídeos , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Glicoproteína da Espícula de Coronavírus/química
3.
Microb Pathog ; 168: 105512, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35381324

RESUMO

INTRODUCTION: Coronavirus disease 2019 (COVID-19) is an illness caused by the new coronavirus severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). It has affected public health and the economy globally. Currently approved vaccines and other drug candidates could be associated with several drawbacks which urges developing alternative therapeutic approaches. AIM: To provide a comprehensive review of anti-SARS-CoV-2 activities of plants and their bioactive compounds. METHODS: Information was gathered from diverse bibliographic platforms such as PubMed, Google Scholar, and ClinicalTrials.gov registry. RESULTS: The present review highlights the potential roles of crude extracts of plants as well as plant-derived small molecules in inhibiting SARS-CoV-2 infection by targeting viral or host factors essential for viral entry, polyprotein processing, replication, assembly and release. Their anti-inflammatory and antioxidant properties as well as plant-based therapies that are under development in the clinical trial phases-1 to 3 are also covered. CONCLUSION: This knowledge could further help understanding SARS-CoV-2 infection and anti-viral mechanisms of plant-based therapeutics.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Internalização do Vírus
4.
J Infect Dis ; 224(Supplement_1): S1-S21, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34111271

RESUMO

The NIH Virtual SARS-CoV-2 Antiviral Summit, held on 6 November 2020, was organized to provide an overview on the status and challenges in developing antiviral therapeutics for coronavirus disease 2019 (COVID-19), including combinations of antivirals. Scientific experts from the public and private sectors convened virtually during a live videocast to discuss severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets for drug discovery as well as the preclinical tools needed to develop and evaluate effective small-molecule antivirals. The goals of the Summit were to review the current state of the science, identify unmet research needs, share insights and lessons learned from treating other infectious diseases, identify opportunities for public-private partnerships, and assist the research community in designing and developing antiviral therapeutics. This report includes an overview of therapeutic approaches, individual panel summaries, and a summary of the discussions and perspectives on the challenges ahead for antiviral development.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/virologia , Desenvolvimento de Medicamentos , Humanos , National Institutes of Health (U.S.) , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Estados Unidos , Replicação Viral/efeitos dos fármacos
5.
Small ; 17(25): e2101483, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33988903

RESUMO

Nanotechnology can offer a number of options against coronavirus disease 2019 (COVID-19) acting both extracellularly and intracellularly to the host cells. Here, the aim is to explore graphene oxide (GO), the most studied 2D nanomaterial in biomedical applications, as a nanoscale platform for interaction with SARS-CoV-2. Molecular docking analyses of GO sheets on interaction with three different structures: SARS-CoV-2 viral spike (open state - 6VYB or closed state - 6VXX), ACE2 (1R42), and the ACE2-bound spike complex (6M0J) are performed. GO shows high affinity for the surface of all three structures (6M0J, 6VYB and 6VXX). When binding affinities and involved bonding types are compared, GO interacts more strongly with the spike or ACE2, compared to 6M0J. Infection experiments using infectious viral particles from four different clades as classified by Global Initiative on Sharing all Influenza Data (GISAID), are performed for validation purposes. Thin, biological-grade GO nanoscale (few hundred nanometers in lateral dimension) sheets are able to significantly reduce copies for three different viral clades. This data has demonstrated that GO sheets have the capacity to interact with SARS-CoV-2 surface components and disrupt infectivity even in the presence of any mutations on the viral spike. GO nanosheets are proposed to be further explored as a nanoscale platform for development of antiviral strategies against COVID-19.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Grafite , Humanos , Proteínas de Membrana , Simulação de Acoplamento Molecular , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32817221

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China at the end of 2019 and has rapidly caused a pandemic, with over 20 million recorded COVID-19 cases in August 2020 (https://covid19.who.int/). There are no FDA-approved antivirals or vaccines for any coronavirus, including SARS-CoV-2. Current treatments for COVID-19 are limited to supportive therapies and off-label use of FDA-approved drugs. Rapid development and human testing of potential antivirals is urgently needed. Numerous drugs are already approved for human use, and subsequently, there is a good understanding of their safety profiles and potential side effects, making them easier to fast-track to clinical studies in COVID-19 patients. Here, we present data on the antiviral activity of 20 FDA-approved drugs against SARS-CoV-2 that also inhibit SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). We found that 17 of these inhibit SARS-CoV-2 at non-cytotoxic concentrations. We directly followed up seven of these to demonstrate that all are capable of inhibiting infectious SARS-CoV-2 production. Moreover, we evaluated two of these, chloroquine and chlorpromazine, in vivo using a mouse-adapted SARS-CoV model and found that both drugs protect mice from clinical disease.IMPORTANCE There are no FDA-approved antivirals for any coronavirus, including SARS-CoV-2. Numerous drugs are already approved for human use that may have antiviral activity and therefore could potentially be rapidly repurposed as antivirals. Here, we present data assessing the antiviral activity of 20 FDA-approved drugs against SARS-CoV-2 that also inhibit SARS-CoV and MERS-CoV in vitro We found that 17 of these inhibit SARS-CoV-2, suggesting that they may have pan-anti-coronaviral activity. We directly followed up seven of these and found that they all inhibit infectious-SARS-CoV-2 production. Moreover, we evaluated chloroquine and chlorpromazine in vivo using mouse-adapted SARS-CoV. We found that neither drug inhibited viral replication in the lungs, but both protected against clinical disease.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Células A549 , Animais , COVID-19 , Cloroquina/farmacologia , Clorpromazina/farmacologia , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Pandemias , SARS-CoV-2 , Resultado do Tratamento , Estados Unidos , United States Food and Drug Administration , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
7.
Appl Microbiol Biotechnol ; 105(9): 3457-3470, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33876282

RESUMO

Although great advances have been made on large-scale manufacturing of vaccines and antiviral-based drugs, viruses persist as the major cause of human diseases nowadays. The recent pandemic of coronavirus disease-2019 (COVID-19) mounts a lot of stress on the healthcare sector and the scientific society to search continuously for novel components with antiviral possibility. Herein, we narrated the different tactics of using biopeptides as antiviral molecules that could be used as an interesting alternative to treat COVID-19 patients. The number of peptides with antiviral effects is still low, but such peptides already displayed huge potentials to become pharmaceutically obtainable as antiviral medications. Studies showed that animal venoms, mammals, plant, and artificial sources are the main sources of antiviral peptides, when bioinformatics tools are used. This review spotlights bioactive peptides with antiviral activities against human viruses, especially the coronaviruses such as severe acute respiratory syndrome (SARS) virus, Middle East respiratory syndrome (MERS) virus, and severe acute respiratory syndrome coronavirus 2 (SARS-COV-2 or SARS-nCOV19). We also showed the data about well-recognized peptides that are still under investigations, while presenting the most potent ones that may become medications for clinical use.


Assuntos
Antivirais , COVID-19 , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Peptídeos , Estudos Prospectivos , SARS-CoV-2
8.
Adv Exp Med Biol ; 1322: 339-357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34258747

RESUMO

Posttranslational modifications of targeted substrates alter their cellular fate. Ubiquitin is a highly conserved and ubiquitous covalent modifier protein that tags substrates with a single molecule or with a polyubiquitin chain. Monoubiquitination affects trafficking and signaling patterns of modified proteins. In contrast, polyubiquitination, particularly K48-linked polyubiquitination, targets the protein for degradation by the Ubiquitin-Proteasome System (UPS) resulting in a committed fate through irreversible inactivation of substrate. Given the diversity of cellular functions impacted by ubiquitination, it is no surprise that the wily pathogenic viruses have co-opted the UPS in myriad ways to ensure their survival. In this review, I describe viral exploitation of nondegradative ubiquitin signaling pathways to effect entry, replication, and egress. Additionally, viruses also harness the UPS to degrade antiviral cellular host factors. Finally, I describe how we can exploit the same proteolytic machinery to enable PROTACs (Proteolysis-Targeting Chimeras) to degrade essential viral proteins. Successful implementation of this modality will add to the arsenal of emerging antiviral therapies.


Assuntos
Antivirais , Ubiquitina , Antivirais/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
Molecules ; 24(5)2019 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-30832429

RESUMO

DiNap [(E)-1-(2-hydroxy-4,6-dimethoxyphenyl)-3-(naphthalen-1-yl)prop-2-en-1-one], an analog of a natural product (the chalcone flavokawain), was synthesized and characterized in this study. Porcine reproductive and respiratory syndrome virus (PRRSV) is the most challenging threat to the swine industry worldwide. Currently, commercially available vaccines are ineffective for controlling porcine reproductive and respiratory syndrome (PRRS) in pigs. Therefore, a pharmacological intervention may represent an alternative control measure for PRRSV infection. Hence, the present study evaluated the effects of DiNap on the replication of VR2332 (a prototype strain of type 2 PRRSV). Initially, in vitro antiviral assays against VR2332 were performed in MARC-145 cells and porcine alveolar macrophages (PAMs). Following this, a pilot study was conducted in a pig model to demonstrate the effects of DiNap following VR2332 infection. DiNap inhibited VR2332 replication in both cell lines in a dose-dependent manner, and viral growth was completely suppressed at concentrations ≥0.06 mM, without significant cytotoxicity. Consistent with these findings, in the pig study, DiNap also reduced viral loads in the serum and lungs and enhanced the weight gain of pigs following VR2332 infection, as indicated by comparison of the DiNap-treated groups to the untreated control (NC) group. In addition, DiNap-treated pigs had fewer gross and microscopic lesions in their lungs than NC pigs. Notably, virus transmission was also delayed by approximately 1 week in uninfected contact pigs within the same group after treatment with DiNap. Taken together, these results suggest that DiNap has potential anti-PRRSV activity and could be useful as a prophylactic or post-exposure treatment drug to control PRRSV infection in pigs.


Assuntos
Produtos Biológicos/química , Flavonoides/química , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Animais , Produtos Biológicos/administração & dosagem , Produtos Biológicos/síntese química , Chalcona/administração & dosagem , Chalcona/síntese química , Chalcona/química , Flavonoides/administração & dosagem , Flavonoides/síntese química , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Macrófagos Alveolares/efeitos dos fármacos , Projetos Piloto , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos/virologia , Carga Viral
10.
Int J Med Sci ; 14(13): 1342-1359, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29200948

RESUMO

Dengue is an important global threat caused by dengue virus (DENV) that records an estimated 390 million infections annually. Despite the availability of CYD-TDV as a commercial vaccine, its long-term efficacy against all four dengue virus serotypes remains unsatisfactory. There is therefore an urgent need for the development of antiviral drugs for the treatment of dengue. Peptide was once a neglected choice of medical treatment but it has lately regained interest from the pharmaceutical industry following pioneering advancements in technology. In this review, the design of peptide drugs, antiviral activities and mechanisms of peptides and peptidomimetics (modified peptides) action against dengue virus are discussed. The development of peptides as inhibitors for viral entry, replication and translation is also described, with a focus on the three main targets, namely, the host cell receptors, viral structural proteins and viral non-structural proteins. The antiviral peptides designed based on these approaches may lead to the discovery of novel anti-DENV therapeutics that can treat dengue patients.


Assuntos
Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Peptídeos/uso terapêutico , Peptidomiméticos/uso terapêutico , Antivirais/uso terapêutico , Dengue/epidemiologia , Dengue/virologia , Vacinas contra Dengue/uso terapêutico , Vírus da Dengue/patogenicidade , Humanos , Internalização do Vírus/efeitos dos fármacos
11.
Biomaterials ; 311: 122689, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38944967

RESUMO

We present a bioprinted three-layered airway model with a physiologically relevant microstructure for the study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection dynamics. This model exhibited clear cell-cell junctions and mucus secretion with an efficient expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Having infected air-exposed epithelial cells in the upper layer with a minimum multiplicity of infection of 0.01, the airway model showed a marked susceptibility to SARS-CoV-2 within one-day post-infection (dpi). Furthermore, the unique longevity allowed the observation of cytopathic effects and barrier degradation for 21 dpi. The in-depth transcriptomic analysis revealed dramatic changes in gene expression affecting the infection pathway, viral proliferation, and host immune response which are consistent with COVID-19 patient data. Finally, the treatment of antiviral agents, such as remdesivir and molnupiravir, through the culture medium underlying the endothelium resulted in a marked inhibition of viral replication within the epithelium. The bioprinted airway model can be used as a manufacturable physiological platform to study disease pathogeneses and drug efficacy.

12.
Curr Pharm Des ; 30(9): 649-665, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347772

RESUMO

Simplexvirus humanalpha1 (Herpes simplex virus type 1 [HSV-1]) infects millions of people globally, manifesting as vesiculo-ulcerative lesions of the oral or genital mucosa. After primary infection, the virus establishes latency in the peripheral neurons and reactivates sporadically in response to various environmental and genetic factors. A unique feature of herpesviruses is their ability to encode tiny noncoding RNAs called microRNA (miRNAs). Simplexvirus humanalpha1 encodes eighteen miRNA precursors that generate twentyseven different mature miRNA sequences. Unique Simplexvirus humanalpha1 miRNAs repertoire is expressed in lytic and latent stages and exhibits expressional disparity in various cell types and model systems, suggesting their key pathological functions. This review will focus on elucidating the mechanisms underlying the regulation of host-virus interaction by HSV-1 encoded viral miRNAs. Numerous studies have demonstrated sequence- specific targeting of both viral and host transcripts by Simplexvirus humanalpha1 miRNAs. While these noncoding RNAs predominantly target viral genes involved in viral life cycle switch, they regulate host genes involved in antiviral immunity, thereby facilitating viral evasion and lifelong viral persistence inside the host. Expression of Simplexvirus humanalpha1 miRNAs has been associated with disease progression and resolution. Systemic circulation and stability of viral miRNAs compared to viral mRNAs can be harnessed to utilize their potential as diagnostic and prognostic markers. Moreover, functional inhibition of these enigmatic molecules may allow us to devise strategies that have therapeutic significance to contain Simplexvirus humanalpha1 infection.


Assuntos
Herpesvirus Humano 1 , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Herpesvirus Humano 1/genética , RNA Viral/genética , Herpes Simples/virologia , Herpes Simples/genética , Animais
13.
Open Biol ; 14(6): 230363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889796

RESUMO

We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious viruses in multiple cell culture models for all six families of viruses causing most respiratory diseases in humans. In animals, this chemotype has been demonstrated efficacious for porcine epidemic diarrhoea virus (a coronavirus) and respiratory syncytial virus (a paramyxovirus). PAV-431 is shown to bind to the protein 14-3-3, a known allosteric modulator. However, it only appears to target the small subset of 14-3-3 which is present in a dynamic multi-protein complex whose components include proteins implicated in viral life cycles and in innate immunity. The composition of this target multi-protein complex appears to be modified upon viral infection and largely restored by PAV-431 treatment. An advanced analog, PAV-104, is shown to be selective for the virally modified target, thereby avoiding host toxicity. Our findings suggest a new paradigm for understanding, and drugging, the host-virus interface, which leads to a new clinical therapeutic strategy for treatment of respiratory viral disease.


Assuntos
Antivirais , Antivirais/farmacologia , Antivirais/química , Humanos , Animais , Proteínas 14-3-3/metabolismo , Complexos Multiproteicos/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Linhagem Celular
14.
Animals (Basel) ; 13(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37684954

RESUMO

Equid alphaherpesvirus type 8 (EqHV-8) is the causative agent of severe respiratory disease, abortions, and neurological syndromes in equines and has resulted in huge economic losses to the donkey industry. Currently, there exist no therapeutic molecules for controlling EqHV-8 infection. We evaluated the potential antiviral activity of cobalt protoporphyrin (CoPP) against EqHV-8 infection. Our results demonstrated that CoPP inhibited EqHV-8 infection in susceptible cells and mouse models. Furthermore, CoPP blocked the replication of EqHV-8 via HO-1 (heme oxygenase-1) mediated type I interferon (IFN) response. In conclusion, our data suggested that CoPP could serve as a novel potential molecule to develop an effective therapeutic strategy for EqHV-8 prevention and control.

15.
Pathol Res Pract ; 248: 154720, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37542862

RESUMO

Neuroendocrine neoplasms (NENs) comprise malignancies involving neuroendocrine cells that often lead to fatal pathological conditions. Despite escalating global incidences, NENs still have poor prognoses. Interestingly, research indicates an intricate association of tumor viruses with NENs. However, there is a dearth of comprehension of the complete scenario of NEN pathophysiology and its precise connections with the tumor viruses. Interestingly, several cutting-edge experiments became helpful for further screening of NET for the presence of polyomavirus, Human papillomavirus (HPV), Kaposi sarcoma-associated herpesvirus (KSHV), Epstein Barr virus (EBV), etc. Current research on the neuroendocrine tumor (NET) pathogenesis provides new information concerning their molecular mechanisms and therapeutic interventions. Of note, scientists observed that metastatic neuroendocrine tumors still have a poor prognosis with a palliative situation. Different oncolytic vector has already demonstrated excellent efficacies in clinical studies. Therefore, oncolytic virotherapy or virus-based immunotherapy could be an emerging and novel therapeutic intervention. In-depth understanding of all such various aspects will aid in managing, developing early detection assays, and establishing targeted therapeutic interventions for NENs concerning tumor viruses. Hence, this review takes a novel approach to discuss the dual role of tumor viruses in association with NENs' pathophysiology as well as its potential therapeutic interventions.


Assuntos
Carcinoma Neuroendócrino , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 8 , Tumores Neuroendócrinos , Humanos , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/terapia , Herpesvirus Humano 4 , Tumores Neuroendócrinos/terapia , Tumores Neuroendócrinos/patologia
16.
Trends Pharmacol Sci ; 44(12): 865-868, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37500295

RESUMO

Timely intervention of preventative and therapeutic measures abated a 2022 mpox global outbreak. However, the high transmissibility and unique pathological characteristics of mpox demand further investigation. Here, we discuss the potentials of human skin-on-a-chip as a valuable model for mpox disease evaluation, to achieve in-depth physiological understanding and desirable therapeutic predictive capabilities.


Assuntos
Mpox , Humanos , Avaliação Pré-Clínica de Medicamentos , Dispositivos Lab-On-A-Chip
17.
Curr Res Immunol ; 4: 100062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273890

RESUMO

RNA viruses always have been a serious concern for human health by causing several outbreaks, often pandemics. The excessive mortality and deaths associated with the outbreaks caused by these viruses were due to the excessive induction of pro-inflammatory cytokines leading to cytokine storm. Cytokines are important for cell-to-cell communication to maintain cell homeostasis. Disturbances of this homeostasis can lead to intricate chain reactions resulting in a massive release of cytokines. This could lead to a severe self-reinforcement of several feedback processes, which could eventually cause systemic harm, multiple organ failure, or death. Multiple inflammation-associated pathways were involved in the cytokine production and its regulation. Different RNA viruses induce these pathways through the interplay with their viral factors and host proteins and miRNAs regulating these pathways. This review will discuss the interplay of host proteins and miRNAs that can play an important role in the regulation of cytokine storm and the possible therapeutic potential of these molecules for the treatment and the challenges associated with the clinical translation.

18.
Cell Host Microbe ; 31(7): 1154-1169.e10, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37339625

RESUMO

Targeted protein degradation (TPD), as exemplified by proteolysis-targeting chimera (PROTAC), is an emerging drug discovery platform. PROTAC molecules, which typically contain a target protein ligand linked to an E3 ligase ligand, recruit a target protein to the E3 ligase to induce its ubiquitination and degradation. Here, we applied PROTAC approaches to develop broad-spectrum antivirals targeting key host factors for many viruses and virus-specific antivirals targeting unique viral proteins. For host-directed antivirals, we identified a small-molecule degrader, FM-74-103, that elicits selective degradation of human GSPT1, a translation termination factor. FM-74-103-mediated GSPT1 degradation inhibits both RNA and DNA viruses. Among virus-specific antivirals, we developed viral RNA oligonucleotide-based bifunctional molecules (Destroyers). As a proof of principle, RNA mimics of viral promoter sequences were used as heterobifunctional molecules to recruit and target influenza viral polymerase for degradation. This work highlights the broad utility of TPD to rationally design and develop next-generation antivirals.


Assuntos
Antivirais , Vírus , Humanos , Antivirais/farmacologia , Proteólise , RNA Viral/metabolismo , Ligantes , Vírus/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Proteínas de Transporte/metabolismo
19.
Virol Sin ; 38(1): 34-46, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36075566

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a biosafety level-4 (BSL-4) pathogen that causes Crimean-Congo hemorrhagic fever (CCHF) characterized by hemorrhagic manifestation, multiple organ failure and high mortality rate, posing great threat to public health. Despite the recently increasing research efforts on CCHFV, host cell responses associated with CCHFV infection remain to be further characterized. Here, to better understand the cellular response to CCHFV infection, we performed a transcriptomic analysis in human kidney HEK293 â€‹cells by high-throughput RNA sequencing (RNA-seq) technology. In total, 496 differentially expressed genes (DEGs), including 361 up-regulated and 135 down-regulated genes, were identified in CCHFV-infected cells. These regulated genes were mainly involved in host processes including defense response to virus, response to stress, regulation of viral process, immune response, metabolism, stimulus, apoptosis and protein catabolic process. Therein, a significant up-regulation of type III interferon (IFN) signaling pathway as well as endoplasmic reticulum (ER) stress response was especially remarkable. Subsequently, representative DEGs from these processes were well validated by RT-qPCR, confirming the RNA-seq results and the typical regulation of IFN responses and ER stress by CCHFV. Furthermore, we demonstrate that not only type I but also type III IFNs (even at low dosages) have substantial anti-CCHFV activities. Collectively, the data may provide new and comprehensive insights into the virus-host interactions and particularly highlights the potential role of type III IFNs in restricting CCHFV, which may help inform further mechanistic delineation of the viral infection and development of anti-CCHFV strategies.


Assuntos
Fenômenos Biológicos , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Humanos , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/metabolismo , Interferon lambda , Células HEK293 , Antivirais/metabolismo
20.
Front Microbiol ; 13: 951716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983320

RESUMO

Rotavirus (RV) is the leading cause of acute gastroenteritis and watery diarrhea in children under 5 years accounting for high morbidity and mortality in countries with poor socioeconomic status. Although vaccination against RV has been implemented in more than 100 countries, the efficacy of vaccine has been challenged in low-income settings. The lack of any FDA-approved drug against RV is an additional concern regarding the treatment associated with rotavirus-induced infantile death. With the purpose for the discovery of anti-RV therapeutics, we assessed anti-rotaviral potential of quercetin, a well-characterized antioxidant flavonoid. In vitro study revealed that quercetin treatment resulted in diminished production of RV-SA11 (simian strain) viral particles in a concentration-dependent manner as estimated by the plaque assay. Consistent with this result, Western blot analysis also revealed reduced synthesis of viral protein in quercetin-treated RV-SA11-infected MA104 cells compared to vehicle (DMSO) treated controls. Not surprisingly, infection of other RV strains A5-13 (bovine strain) and Wa (Human strain) was also found to be abridged in the presence of quercetin compared to DMSO. The IC50 of quercetin against three RV strains ranges between 2.79 and 4.36 Mm, and S.I. index is greater than 45. Concurrent to the in vitro results, in vivo study in mice model also demonstrated reduced expression of viral proteins and viral titer in the small intestine of quercetin-treated infected mice compared to vehicle-treated infected mice. Furthermore, the result suggested anti-rotaviral activity of quercetin to be interferon-independent. Mechanistic study revealed that the antiviral action of quercetin is co-related with the inhibition of RV-induced early activation of NF-κB pathway. Overall, this study delineates the strong anti-RV potential of quercetin and also proposes it as future therapeutics against rotaviral diarrhea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA