Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.204
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(18): e2217278120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094148

RESUMO

Endosymbiotic bacteria that live inside the cells of insects are typically only transmitted maternally and can spread by increasing host fitness and/or modifying reproduction in sexual hosts. Transinfections of Wolbachia endosymbionts are now being used to introduce useful phenotypes into sexual host populations, but there has been limited progress on applications using other endosymbionts and in asexual populations. Here, we develop a unique pathway to application in aphids by transferring the endosymbiont Rickettsiella viridis to the major crop pest Myzus persicae. Rickettsiella infection greatly reduced aphid fecundity, decreased heat tolerance, and modified aphid body color, from light to dark green. Despite inducing host fitness costs, Rickettsiella spread rapidly through caged aphid populations via plant-mediated horizontal transmission. The phenotypic effects of Rickettsiella were sensitive to temperature, with spread only occurring at 19 °C and not 25 °C. Body color modification was also lost at high temperatures despite Rickettsiella maintaining a high density. Rickettsiella shows the potential to spread through natural M. persicae populations by horizontal transmission and subsequent vertical transmission. Establishment of Rickettsiella in natural populations could reduce crop damage by modifying population age structure, reducing population growth and providing context-dependent effects on host fitness. Our results highlight the importance of plant-mediated horizontal transmission and interactions with temperature as drivers of endosymbiont spread in asexual insect populations.


Assuntos
Afídeos , Coxiellaceae , Animais , Afídeos/microbiologia , Coxiellaceae/genética , Bactérias , Fenótipo , Reprodução , Simbiose
2.
Proc Natl Acad Sci U S A ; 120(14): e2222040120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36976769

RESUMO

Aphids are the most common insect vector transmitting hundreds of plant viruses. Aphid wing dimorphism (winged vs. wingless) not only showcases the phenotypic plasticity but also impacts virus transmission; however, the superiority of winged aphids in virus transmission over the wingless morph is not well understood. Here, we show that plant viruses were efficiently transmitted and highly infectious when associated with the winged morph of Myzus persicae and that a salivary protein contributed to this difference. The carbonic anhydrase II (CA-II) gene was identified by RNA-seq of salivary glands to have higher expression in the winged morph. Aphids secreted CA-II into the apoplastic region of plant cells, leading to elevated accumulation of H+. Apoplastic acidification further increased the activities of polygalacturonases, the cell wall homogalacturonan (HG)-modifying enzymes, promoting degradation of demethylesterified HGs. In response to apoplastic acidification, plants accelerated vesicle trafficking to enhance pectin transport and strengthen the cell wall, which also facilitated virus translocation from the endomembrane system to the apoplast. Secretion of a higher quantity of salivary CA-II by winged aphids promoted intercellular vesicle transport in the plant. The higher vesicle trafficking induced by winged aphids enhanced dispersal of virus particles from infected cells to neighboring cells, thus resulting in higher virus infection in plants relative to the wingless morph. These findings imply that the difference in the expression of salivary CA-II between winged and wingless morphs is correlated with the vector role of aphids during the posttransmission infection process, which influences the outcome of plant endurance of virus infection.


Assuntos
Afídeos , Vírus de Plantas , Viroses , Vírus , Animais , Afídeos/genética , Anidrase Carbônica II , Asas de Animais/metabolismo , Viroses/metabolismo , Doenças das Plantas
3.
BMC Biol ; 22(1): 137, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902723

RESUMO

BACKGROUND: Coevolution between modern aphids and their primary obligate, bacterial endosymbiont, Buchnera aphidicola, has been previously reported at different classification levels based on molecular phylogenetic analyses. However, the Buchnera genome remains poorly understood within the Rhus gall aphids. RESULTS: We assembled the complete genome of the endosymbiont Buchnera in 16 aphid samples, representing 13 species in all six genera of Rhus gall aphids by shotgun genome skimming method. We compared the newly assembled genomes with those from GenBank to comprehensively investigate patterns of coevolution between the bacteria Buchnera and their aphid hosts. Buchnera genomes were mostly collinear, and the pan-genome contained 684 genes, in which the core genome contained 256 genes with some lineages having large numbers of tandem gene duplications. There has been substantial gene-loss in each Buchnera lineage. We also reconstructed the phylogeny for Buchnera and their host aphids, respectively, using 72 complete genomes of Buchnera, along with the complete mitochondrial genomes and three nuclear genes of 31 corresponding host aphid accessions. The cophylogenetic test demonstrated significant coevolution between these two partner groups at individual, species, generic, and tribal levels. CONCLUSIONS: Buchnera exhibits very high levels of genomic sequence divergence but relative stability in gene order. The relationship between the symbionts Buchnera and its aphid hosts shows a significant coevolutionary pattern and supports complexity of the obligate symbiotic relationship.


Assuntos
Afídeos , Buchnera , Genoma Bacteriano , Genômica , Filogenia , Simbiose , Afídeos/microbiologia , Afídeos/genética , Animais , Buchnera/genética , Buchnera/fisiologia , Simbiose/genética , Coevolução Biológica
4.
BMC Genomics ; 25(1): 232, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438880

RESUMO

BACKGROUND: The rose is one of the most important ornamental flowers in the world for its aesthetic beauty but can be attacked by many pests such as aphids. Aphid infestation causes tremendous damage on plant tissues leading to harmed petals and leaves. Rose cultivars express different levels of resistance to aphid infestation yet the information remains unclear. Not only that, studies about the transcriptional analysis on defending mechanisms against aphids in rose are limited so far. RESULTS: In this study, the aphid resistance of 20 rose cultivars was evaluated, and they could be sorted into six levels based on the number ratio of aphids. And then, a transcriptome analysis was conducted after aphid infestation in one high resistance (R, Harmonie) and one highly susceptibility (S, Carefree Wonder) rose cultivar. In open environment the majority of rose cultivars had the highest aphid number at May 6th or May 15th in 2020 and the resistance to infestation could be classified into six levels. Differential expression analysis revealed that there were 1,626 upregulated and 767 downregulated genes in the R cultivar and 481 upregulated and 63 downregulated genes in the S cultivar after aphid infestation. Pathway enrichment analysis of the differentially expressed genes revealed that upregulated genes in R and S cultivars were both enriched in defense response, biosynthesis of secondary metabolites (phenylpropanoid, alkaloid, and flavonoid), carbohydrate metabolism (galactose, starch, and sucrose metabolism) and lipid processing (alpha-linolenic acid and linolenic acid metabolism) pathways. In the jasmonic acid metabolic pathway, linoleate 13S-lipoxygenase was specifically upregulated in the R cultivar, while genes encoding other crucial enzymes, allene oxide synthase, allene oxide cyclase, and 12-oxophytodienoate reductase were upregulated in both cultivars. Transcription factor analysis and transcription factor binding search showed that WRKY transcription factors play a pivotal role during aphid infestation in the R cultivar. CONCLUSIONS: Our study indicated the potential roles of jasmonic acid metabolism and WRKY transcription factors during aphid resistance in rose, providing clues for future research.


Assuntos
Afídeos , Oxilipinas , Animais , Perfilação da Expressão Gênica , Ciclopentanos , Fatores de Transcrição
5.
BMC Genomics ; 25(1): 181, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360528

RESUMO

BACKGROUND: Next-generation Sequencing (NGS) combined with bioinformatic analyses constitutes a powerful approach for identifying and characterizing previously unknown viral genomes. In this study, leaf samples from bitter apple plants (Citrullus colocynthis (L.) Schrad) exhibiting symptoms such as dwarfing, leaf crinkling, and chlorosis were collected from the southern part of Kerman province, Iran. RESULTS: Putative infecting viruses were identified through de novo assembly of sequencing reads using various tools, followed by BLAST analysis. Complete genomes for Squash vein yellowing virus (SqVYV), Citrus-associated rhabdovirus (CiaRV), and a novel polerovirus-related strain termed Bitter apple aphid-borne yellows virus (BaABYV) were assembled and characterized. Additionally, a partial genome for Watermelon mosaic virus (WMV) was assembled. The genomic organization of the BaABYV was determined to be 5'-ORF0-ORF1-ORF1,2-ORF3a-ORF3-ORF3,5-ORF4-3'. Amino acid sequence identities for inferred proteins (P0 and P1, P1,2) with known poleroviruses were found to be the 90% species delineation limit, implying that BaABYV should be considered a new member of the genus Polerovirus. Recombination events were observed in the BaABYV and WMV strains; such events were not found in the CiaRV strain. CONCLUSIONS: Molecular evidence from this study suggests that C. colocynthis is a reservoir host of several plant viruses. Among them, BaABYV is proposed as a new member of the genus Polerovirus. Furthermore, the CiaRV strain has been reported for the first time from Iran.


Assuntos
Citrullus colocynthis , Luteoviridae , Viroses , Citrullus colocynthis/genética , Luteoviridae/genética , Análise de Sequência de DNA , Filogenia , Doenças das Plantas , RNA Viral/genética , Genoma Viral
6.
BMC Genomics ; 25(1): 16, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166596

RESUMO

The Rhus gall aphid, Schlechtendalia chinensis, feeds on its primary host plant Rhus chinensis to induce galls, which have economic importance in medicines and the food industry. Rhus gall aphids have a unique life cycle and are economically beneficial but there is huge gap in genomic information about this group of aphids. Schlechtendalia chinensis induces rich-tannin galls on its host plant and is emerging as a model organism for both commercial applications and applied research in the context of gall production by insects. Here, we generated a high-quality chromosome-level assembly for the S. chinensis genome, enabling the comparison between S. chinensis and non-galling aphids. The final genome assembly is 344.59 Mb with 91.71% of the assembled sequences anchored into 13 chromosomes. We predicted 15,013 genes, of which 14,582 (97.13%) coding genes were annotated, and 99% of the predicted genes were anchored to the 13 chromosomes. This assembly reveals the endogenization of parvovirus-related DNA sequences (PRDs) in the S. chinensis genome, which could play a role in environmental adaptations. We demonstrated the characterization and classification of cytochrome P450s in the genome assembly, which are functionally crucial for sap-feeding insects and have roles in detoxification and insecticide resistance. This genome assembly also revealed the whole genome duplication events in S. chinensis, which can be considered in comparative evolutionary analysis. Our work represents a reference genome for gall-forming aphids that could be used for comparative genomic studies between galling and non-galling aphids and provides the first insight into the endogenization of PRDs in the genome of galling aphids. It also provides novel genetic information for future research on gall-formation and insect-plant interactions.


Assuntos
Afídeos , Parvovirus , Rhus , Animais , Afídeos/genética , Rhus/genética , Sequência de Bases , Cromossomos/genética , Parvovirus/genética
7.
Funct Integr Genomics ; 24(2): 43, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418630

RESUMO

Rapeseed-mustard, the oleiferous Brassica species are important oilseed crops cultivated all over the globe. Mustard aphid Lipaphis erysimi (L.) Kaltenbach is a major threat to the cultivation of rapeseed-mustard. Wild mustard Rorippa indica (L.) Hiern shows tolerance to mustard aphids as a nonhost and hence is an important source for the bioprospecting of potential resistance genes and defense measures to manage mustard aphids sustainably. We performed mRNA sequencing of the R. indica plant uninfested and infested by the mustard aphids, harvested at 24 hours post-infestation. Following quality control, the high-quality reads were subjected to de novo assembly of the transcriptome. As there is no genomic information available for this potential wild plant, the raw reads will be useful for further bioinformatics analysis and the sequence information of the assembled transcripts will be helpful to design primers for the characterization of specific gene sequences. In this study, we also used the generated resource to comprehensively analyse the global profile of differential gene expression in R. indica in response to infestation by mustard aphids. The functional enrichment analysis of the differentially expressed genes reveals a significant immune response and suggests the possibility of chitin-induced defense signaling.


Assuntos
Afídeos , Rorippa , Animais , Mostardeira/genética , Transcriptoma , Afídeos/genética , Rorippa/genética
8.
BMC Plant Biol ; 24(1): 76, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281936

RESUMO

BACKGROUND: The growth and ornamental value of chrysanthemums are frequently hindered by aphid attacks. The ethylene-responsive factor (ERF) gene family is pivotal in responding to biotic stress, including insect stress. However, to date, little is known regarding the involvement of ERF transcription factors (TFs) in the response of chrysanthemum to aphids. RESULTS: In the present study, CmHRE2-like from chrysanthemum (Chrysanthemum morifolium), a transcription activator that localizes mainly to the nucleus, was cloned. Expression is induced by aphid infestation. Overexpression of CmHRE2-like in chrysanthemum mediated its susceptibility to aphids, whereas CmHRE2-like-SRDX dominant repressor transgenic plants enhanced the resistance of chrysanthemum to aphids, suggesting that CmHRE2-like contributes to the susceptibility of chrysanthemum to aphids. The flavonoids in CmHRE2-like-overexpression plants were decreased by 29% and 28% in two different lines, whereas they were increased by 42% and 29% in CmHRE2-like-SRDX dominant repressor transgenic plants. The expression of Chrysanthemum-chalcone-synthase gene(CmCHS), chalcone isomerase gene (CmCHI), and flavonoid 3'-hydroxylase gene(CmF3'H) was downregulated in CmHRE2-like overexpression plants and upregulated in CmHRE2-like-SRDX dominant repressor transgenic plants, suggesting that CmHRE2-like regulates the resistance of chrysanthemum to aphids partially through the regulation of flavonoid biosynthesis. CONCLUSION: CmHRE2-like was a key gene regulating the vulnerability of chrysanthemum to aphids. This study offers fresh perspectives on the molecular mechanisms of chrysanthemum-aphid interactions and may bear practical significance for developing new strategies to manage aphid infestation in chrysanthemums.


Assuntos
Afídeos , Chrysanthemum , Animais , Chrysanthemum/genética , Chrysanthemum/metabolismo , Afídeos/fisiologia , Flavonoides/metabolismo , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas
9.
BMC Plant Biol ; 24(1): 529, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862926

RESUMO

BACKGROUND: The sorghum aphid Melanaphis sacchari (Zehntner) (Homoptera: Aphididae) is an important insect in the late growth phase of sorghum (Sorghum bicolor L.). However, the mechanisms of sorghum response to aphid infestation are unclear. RESULTS: In this paper, the mechanisms of aphid resistance in different types of sorghum varieties were revealed by studying the epidermal cell structure and performing a transcriptome and metabolome association analysis of aphid-resistant and aphid-susceptible varieties. The epidermal cell results showed that the resistance of sorghum to aphids was positively correlated with epidermal cell regularity and negatively correlated with the intercellular space and leaf thickness. Transcriptome and metabolomic analyses showed that differentially expressed genes in the resistant variety HN16 and susceptible variety BTX623 were mainly enriched in the flavonoid biosynthesis pathway and differentially expressed metabolites were mainly related to isoflavonoid biosynthesis and flavonoid biosynthesis. The q-PCR results of key genes were consistent with the transcriptome expression results. Meanwhile, the metabolome test results showed that after aphidinfestation, naringenin and genistein were significantly upregulated in the aphid-resistant variety HN16 and aphid-susceptible variety BTX623 while luteolin was only significantly upregulated in BTX623. These results show that naringenin, genistein, and luteolin play important roles in plant resistance to aphid infestation. The results of exogenous spraying tests showed that a 1‰ concentration of naringenin and genistein is optimal for improving sorghum resistance to aphid feeding. CONCLUSIONS: In summary, the physical properties of the sorghum leaf structure related to aphid resistance were studied to provide a reference for the breeding of aphid-resistant varieties. The flavonoid biosynthesis pathway plays an important role in the response of sorghum aphids and represents an important basis for the biological control of these pests. The results of the spraying experiment provide insights for developing anti-aphid substances in the future.


Assuntos
Afídeos , Metaboloma , Sorghum , Transcriptoma , Sorghum/genética , Sorghum/parasitologia , Sorghum/metabolismo , Afídeos/fisiologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Folhas de Planta/genética
10.
Proc Biol Sci ; 291(2016): 20232462, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38320609

RESUMO

Global change drivers are imposing novel conditions on Earth's ecosystems at an unprecedented rate. Among them, biological invasions and climate change are of critical concern. It is generally thought that strictly asexual populations will be more susceptible to rapid environmental alterations due to their lack of genetic variability and, thus, of adaptive responses. In this study, we evaluated the persistence of a widely distributed asexual lineage of the alfalfa race of the pea aphid, Acyrthosiphon pisum, along a latitudinal transect of approximately 600 km in central Chile after facing environmental change for a decade. Based on microsatellite markers, we found an almost total replacement of the original aphid superclone by a new variant. Considering the unprecedented warming that this region has experienced in recent years, we experimentally evaluated the reproductive performance of these two A. pisum lineages at different thermal regimes. The new variant exhibits higher rates of population increase at warmer temperatures, and computer simulations employing a representative temperature dataset suggest that it might competitively displace the original superclone. These results support the idea of a superclone turnover mediated by differential reproductive performance under changing temperatures.


Assuntos
Afídeos , Pisum sativum , Animais , Afídeos/fisiologia , Ecossistema , Chile , Reprodução
11.
Plant Cell Environ ; 47(5): 1543-1555, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38254306

RESUMO

Plant volatiles play an important role in intra- and interspecific plant communication, inducing direct and indirect defenses against insect pests. However, it remains unknown whether volatile interactions between undamaged cultivars alter host plant volatile emissions and their perception by insect pests. Here, we tested the effects of exposure of a spring barley, Hordeum vulgare L., cultivar, Salome, to volatiles from other cultivars: Fairytale and Anakin. We found that exposing Salome to Fairytale induced a significantly higher emission of trans-ß-ocimene and two unidentified compounds compared when exposed to Anakin. Aphids were repelled at a higher concentration of trans-ß-ocimene. Salome exposure to Fairytale had significant repulsive effects on aphid olfactory preference, yet not when Salome was exposed to Anakin. We demonstrate that volatile interactions between specific undamaged plants can induce changes in volatile emission by receiver plants enhancing certain compounds, which can disrupt aphid olfactory preferences. Our results highlight the significant roles of volatiles in plant-plant interactions, affecting plant-insect interactions in suppressing insect pests. This has important implications for crop protection and sustainable agriculture.


Assuntos
Monoterpenos Acíclicos , Afídeos , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/farmacologia , Plantas , Alcenos , Herbivoria
12.
Insect Mol Biol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923717

RESUMO

Epigenetic mechanisms, such as DNA methylation, have been proposed to mediate plastic responses in insects. The pea aphid (Acyrthosiphon pisum), like the majority of extant aphids, displays cyclical parthenogenesis - the ability of mothers to switch the reproductive mode of their offspring from reproducing parthenogenetically to sexually in response to environmental cues. The pea aphid genome encodes two paralogs of the de novo DNA methyltransferase gene, dnmt3a and dnmt3x. Here we show, using phylogenetic analysis, that this gene duplication event occurred at least 150 million years ago, likely after the divergence of the lineage leading to the Aphidomorpha (phylloxerans, adelgids and true aphids) from that leading to the scale insects (Coccomorpha) and that the two paralogs are maintained in the genomes of all aphids examined. We also show that the mRNA of both dnmt3 paralogs is maternally expressed in the viviparous aphid ovary. During development both paralogs are expressed in the germ cells of embryos beginning at stage 5 and persisting throughout development. Treatment with 5-azactyidine, a chemical that generally inhibits the DNA methylation machinery, leads to defects of oocytes and early-stage embryos and causes a proportion of later stage embryos to be born dead or die soon after birth. These phenotypes suggest a role for DNA methyltransferases in reproduction, consistent with that seen in other insects. Taking the vast evolutionary history of the dnmt3 paralogs, and the localisation of their mRNAs in the ovary, we suggest there is a role for dnmt3a and/or dnmt3x in early development, and a role for DNA methylation machinery in reproduction and development of the viviparous pea aphid.

13.
Insect Mol Biol ; 33(3): 228-245, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38348538

RESUMO

Aphid genomic resources enable the study of complex life history traits and provide information on vector biology, host adaption and speciation. The currant-lettuce aphid (Nasonovia ribisnigri (Hemiptera: Aphididae) (Mosley)) is a cosmopolitan pest of outdoor lettuce (Lactuca sativa (Asterales: Asteraceae) (Linnaeus)). Until recently, the use of resistant cultivars was an effective method for managing N. ribisnigri. A resistant cultivar containing a single gene (Nr-locus), introduced in the 1980s, conferred complete resistance to feeding. Overreliance of this Nr-locus in lettuce resulted in N. ribisnigri's ability to break resistance mechanism, with first reports during 2003. Our work attempts to understand which candidate gene(s) are associated with this resistance-breaking mechanism. We present two de novo draft assembles for N. ribisnigri genomes, corresponding to both avirulent (Nr-locus susceptible) and virulent (Nr-locus resistant) biotypes. Changes in gene expression of the two N. ribisnigri biotypes were investigated using transcriptomic analyses of RNA-sequencing (RNA-seq) data to understand the potential mechanisms of resistance to the Nr-locus in lettuce. The draft genome assemblies were 94.2% and 91.4% complete for the avirulent and virulent biotypes, respectively. Out of the 18,872 differentially expressed genes, a single gene/locus was identified in N. ribisnigri that was shared between two resistant-breaking biotypes. This locus was further explored and validated in Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) experiments and has predicted localisations in both the cytoplasm and nucleus. This is the first study to provide evidence that a single gene/locus is likely responsible for the ability of N. ribisnigri to overcome the Nr-locus resistance in the lettuce host.


Assuntos
Afídeos , Lactuca , Lactuca/genética , Lactuca/parasitologia , Afídeos/genética , Animais , Perfilação da Expressão Gênica , Genoma de Inseto , Transcriptoma
14.
Arch Microbiol ; 206(3): 96, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349547

RESUMO

Aphids shelter several bacteria that benefit them in various ways. The associates having an obligatory relationship are non-culturable, while a few of facultative associates are culturable in insect cell lines, axenic media or standard microbiology media. In the present investigation, isolation, and characterization of the culturable bacterial associates of various aphid species, viz., Rhopalosiphum maidis, Rhopalosiphum padi, Sitobion avenae, Schizaphis graminum, and Lipaphis erysimi pseudobrassicae were carried out. A total of 42 isolates were isolated using different growth media, followed by their morphological, biochemical, and molecular characterization. The isolated culturable bacterial associates were found to belong to the genera Acinetobacter, Bacillus, Brevundimonas, Cytobacillus, Fictibacillus, Planococcus, Priestia, Pseudomonas, Staphylococcus, Sutcliffiella, and Tumebacillus which were grouped under seven families of four different orders of phyla Bacillota (Firmicutes) and Pseudomonata (Proteobacteria). Symbiont-entomopathogen interaction study was also conducted, in which the quantification of colony forming units of culturable bacterial associates of entomopathogenic fungal-treated aphids led us to the assumption that the bacterial load in aphid body can be altered by the application of entomopathogens. Whereas, the mycelial growth of entomopathogens Akanthomyces lecanii and Metarhizium anisopliae was found uninhibited by the bacterial associates obtained from Sitobion avenae and Rhopalosiphum padi. Analyzing persistent aphid microflora and their interactions with entomopathogens enhances our understanding of aphid resistance. It also fosters the development of innovative solutions for agricultural pest management, highlighting the intricate dynamics of symbiotic relationships in pest management strategies.


Assuntos
Afídeos , Bacillaceae , Bacillus , Animais , Bactérias/genética , Firmicutes
15.
Am J Bot ; : e16301, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468124

RESUMO

PREMISE: Polyploidy is a widespread mutational process in angiosperms that may alter population performance of not only plants but also their interacting species. Yet, knowledge of whether polyploidy affects plant-herbivore dynamics is scarce. Here, we tested whether aphid herbivores exhibit preference for diploid or neopolyploid plants, whether polyploidy impacts plant and herbivore performance, and whether these interactions depend on the plant genetic background. METHODS: Using independently synthesized neotetraploid strains paired with their diploid progenitors of greater duckweed (Spirodela polyrhiza), we evaluated the effect of neopolyploidy on duckweed's interaction with the water-lily aphid (Rhopalosiphum nymphaeae). Using paired-choice experiments, we evaluated feeding preference of the herbivore. We then evaluated the consequences of polyploidy on aphid and plant performance by measuring population growth over multiple generations. RESULTS: Aphids preferred neopolyploids when plants were provided at equal abundances but not at equal surface areas, suggesting the role of plant population surface area in driving this preference. Additionally, neopolyploidy increased aphid population performance, but this result was dependent on the plant's genetic lineage. Lastly, the impact of herbivory on neopolyploid vs. diploid duckweed varied greatly with genetic lineage, where neopolyploids appeared to be variably tolerant compared to diploids, sometimes mirroring the effect on herbivore performance. CONCLUSIONS: By experimentally testing the impacts of polyploidy on trophic species interactions, we showed that polyploidization can impact the preference and performance of herbivores on their plant hosts. These results have significant implications for the establishment and persistence of plants and herbivores in the face of plant polyploidy.

16.
Biol Lett ; 20(5): 20240095, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774968

RESUMO

The transmission efficiency of aphid-vectored plant viruses can differ between aphid populations. Intra-species diversity (genetic variation, endosymbionts) is a key determinant of aphid phenotype; however, the extent to which intra-species diversity contributes towards variation in virus transmission efficiency is unclear. Here, we use multiple populations of two key aphid species that vector barley yellow dwarf virus (BYDV) strain PAV (BYDV-PAV), the grain aphid (Sitobion avenae) and the bird cherry-oat aphid (Rhopalosiphum padi), and examine how diversity in vector populations influences virus transmission efficiency. We use Illumina sequencing to characterize genetic and endosymbiont variation in multiple Si. avenae and Rh. padi populations and conduct BYDV-PAV transmission experiments to identify links between intra-species diversity in the vector and virus transmission efficiency. We observe limited variation in the transmission efficiency of Si. avenae, with transmission efficiency consistently low for this species. However, for Rh. padi, we observe a range of transmission efficiencies and show that BYDV transmission efficiency is influenced by genetic diversity within the vector, identifying 542 single nucleotide polymorphisms that potentially contribute towards variable transmission efficiency in Rh. padi. Our results represent an important advancement in our understanding of the relationship between genetic diversity, vector-virus interactions, and virus transmission efficiency.


Assuntos
Afídeos , Variação Genética , Insetos Vetores , Luteovirus , Doenças das Plantas , Afídeos/virologia , Afídeos/genética , Animais , Insetos Vetores/virologia , Insetos Vetores/genética , Doenças das Plantas/virologia , Luteovirus/genética , Luteovirus/fisiologia , Simbiose
17.
Naturwissenschaften ; 111(4): 35, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916816

RESUMO

Whether in ant-aphid mutualism the ants exert evolutionary selection pressure on aphid morphology has not yet been fully tested. Here, we tested whether the long proboscises of Stomaphis yanonis (Aphididae Lachninae) aphids confer an advantage in preventing predation by the tending ants. Specifically, we tested the hypothesis that aphids with a shorter proboscis would excrete less honeydew, making them more likely to be preyed upon by ants. Our results showed that aphid individuals with a shorter proboscis took up less phloem sap and excreted less honeydew than individuals with a longer proboscis. In addition, among aphids with a similar body size, those with a shorter proboscis were more susceptible to predation by ants than those with a longer proboscis. These results suggest that predation by tending ants, by exerting selection pressure on aphid proboscis morphology, has caused the aphids to evolve longer proboscises.


Assuntos
Formigas , Afídeos , Comportamento Predatório , Animais , Afídeos/fisiologia , Formigas/fisiologia , Comportamento Predatório/fisiologia , Simbiose/fisiologia
18.
Mol Biol Rep ; 51(1): 207, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270755

RESUMO

BACKGROUND: Sorghum (Sorghum bicolor) is an important cereal crop grown worldwide because of its multipurpose uses such as food, forage, and bioenergy feedstock and its wide range of adaption even in marginal environments. Greenbug can cause severe damage to sorghum plants and yield loss. Plant NAC transcription factors (TFs) have been reported to have diverse functions in plant development and plant defense but has not been studied in sorghum yet. METHODS AND RESULTS: In this study, a comprehensive analysis of the sorghum NAC (SbNAC) gene family was conducted through genome-wide analysis. A total of 112 NAC genes has been identified in the sorghum genome. These SbNAC genes are phylogenetically clustered into 15 distinct subfamilies and unevenly distribute in clusters at the telomeric ends of each chromosome. Twelve pairs of SbNAC genes are possibly involved in the segmental duplication among nine chromosomes except chromosome 10. Structure analysis showed the diverse structures with a highly variable number of exons in the SbNAC genes. Furthermore, most of the SbNAC genes showed specific temporal and spatial expression patterns according to the results of RNA-seq analysis, suggesting their diverse functions during sorghum growth and development. We have also identified nine greenbug-inducible SbNAC genes by comparing the expression profiles between two sorghum genotypes (susceptible BTx623 and resistant PI607900) in response to greenbug infestation. CONCLUSIONS: Our systematic analysis of the NAC gene expression profiles provides both a preliminary survey into their roles in plant defense against insect pests and a useful reference for in-depth characterization of the SbNAC genes and the regulatory network that contributes genetic resistance to aphids.


Assuntos
Sorghum , Sorghum/genética , Grão Comestível , Genótipo , Acetilcisteína
19.
J Chem Ecol ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470529

RESUMO

The cabbage aphid (Brevicoryne brassicae) is a major pest of kale (Brassica oleraceae var. acephala), an important vegetable that is grown worldwide due to its high nutritional and economic value. Brevicoryne brassicae poses a great challenge to B. oleraceae var. acephala production, causing significant direct and indirect yield losses. Farmers overly rely on synthetic insecticides to manage the pest with limited success owing to its high reproductive behavior and development of resistance. This necessitates a search for sustainable alternatives to mitigate these challenges. This study assessed behavioral responses of B. brassicae to odors from rosemary (Rosmarinus officinalis) and B. oleraceae var. acephala headspace volatiles in a Perspex four-arm olfactometer. We identified and quantified volatiles emitted by each of the two plants and those eliciting antennal response using coupled gas chromatography-mass spectrometry (GC-MS) and GC-electroantennograhic detection(GC-EAD), respectively. Our findings revealed that B. brassicae spent more time in the arms of the olfactometer that contained B. oleraceae var. acephala volatiles compared to the arm that held R. officinalis volatiles. Additionally, B. brassicae spent more time in the olfactometer arms with B. oleracea var. acephala compared to the arms holding B. oleracea var. acephala and R. officinalis enclosed together and clean air. GC-MS analysis revealed diverse and higher quantities of volatile compounds in R. officinalis compared to B. oleraceae var. acephala. GC-EAD analysis showed that antennae of B. brassicae detected Linalool, α-Terpineol, Verbenone, Geraniol, Camphor, and Borneol from the volatiles of R. officinalis, and Sabinene, γ-Terpinene, and ß-Caryophyllene from B. oleraceae var. acephala volatiles. Our findings demonstrate the potential of R. officinalis as a repellent plant against B. brassicae and could be utilized as a 'push' plant in an intercropping strategy against this pest.

20.
J Chem Ecol ; 50(5-6): 262-275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38647585

RESUMO

The production of herbivore-induced plant volatiles (HIPVs) is a type of indirect defense used by plants to attract natural enemies and reduce herbivory by insect pests. In many crops little is known about genotypic variation in HIPV production or how this may affect natural enemy attraction. In this study, we identified and quantified HIPVs produced by 10 sorghum (Sorghum bicolor) cultivars infested with a prominent aphid pest, the sorghum aphid (Melanaphis sorghi Theobald). Volatiles were collected using dynamic headspace sampling techniques and identified and quantified using GC-MS. The total amounts of volatiles induced by the aphids did not differ among the 10 cultivars, but overall blends of volatiles differed significantly in composition. Most notably, aphid herbivory induced higher levels of methyl salicylate (MeSA) emission in two cultivars, whereas in four cultivars, the volatile emissions did not change in response to aphid infestation. Dual-choice olfactometer assays were used to determine preference of the aphid parasitoid, Aphelinus nigritus, and predator, Chrysoperla rufilabris, between plants of the same cultivar that were un-infested or infested with aphids. Two aphid-infested cultivars were preferred by natural enemies, while four other cultivars were more attractive to natural enemies when they were free of aphids. The remaining four cultivars elicited no response from parasitoids. Our work suggests that genetic variation in HIPV emissions greatly affects parasitoid and predator attraction to aphid-infested sorghum and that screening crop cultivars for specific predator and parasitoid attractants has the potential to improve the efficacy of biological control.


Assuntos
Afídeos , Herbivoria , Sorghum , Compostos Orgânicos Voláteis , Afídeos/fisiologia , Animais , Sorghum/metabolismo , Sorghum/química , Sorghum/parasitologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Salicilatos/metabolismo , Salicilatos/farmacologia , Vespas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA