Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Parasitology ; 151(4): 400-411, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38465385

RESUMO

Individual organisms can host multiple species of parasites (or symbionts), and one species of parasite can infect different host species, creating complex interactions among multiple hosts and parasites. When multiple parasite species coexist in a host, they may compete or use strategies, such as spatial niche partitioning, to reduce competition. Here, we present a host­symbiont system with two species of Selenidium (Apicomplexa, Gregarinida) and one species of astome ciliate co-infecting two different species of slime feather duster worms (Annelida, Sabellidae, Myxicola) living in neighbouring habitats. We examined the morphology of the endosymbionts with light and scanning electron microscopy (SEM) and inferred their phylogenetic interrelationships using small subunit (SSU) rDNA sequences. In the host 'Myxicola sp. Quadra', we found two distinct species of Selenidium; S. cf. mesnili exclusively inhabited the foregut, and S. elongatum n. sp. inhabited the mid to hindgut, reflecting spatial niche partitioning. Selenidium elongatum n. sp. was also present in the host M. aesthetica, which harboured the astome ciliate Pennarella elegantia n. gen. et sp. Selenidium cf. mesnili and P. elegantia n. gen. et sp. were absent in the other host species, indicating host specificity. This system offers an intriguing opportunity to explore diverse aspects of host­endosymbiont interactions and competition among endosymbionts.


Assuntos
Apicomplexa , Especificidade de Hospedeiro , Filogenia , Simbiose , Animais , Apicomplexa/fisiologia , Apicomplexa/genética , Apicomplexa/classificação , Apicomplexa/ultraestrutura , Coinfecção/parasitologia , Coinfecção/veterinária , Cilióforos/fisiologia , Cilióforos/classificação , Cilióforos/genética , Anelídeos , Interações Hospedeiro-Parasita , Microscopia Eletrônica de Varredura , Doenças das Aves/parasitologia
2.
Curr Biol ; 34(12): 2748-2755.e3, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38821048

RESUMO

Apicomplexans are obligate intracellular parasites that have evolved from a free-living, phototrophic ancestor. They have been reported from marine environmental samples in high numbers,1 with several clades of apicomplexan-related lineages (ARLs) having been described from environmental sequencing data (16S rRNA gene metabarcoding).2 The most notable of these are the corallicolids (previously ARL-V), which possess chlorophyll-biosynthesis genes in their relic chloroplast (apicoplast) and are geographically widespread and abundant symbionts of anthozoans.3 Corallicolids are related to the Eimeriorina, a suborder of apicomplexan coccidians that include other notable members such as Toxoplasma gondii.4Ophioblennius macclurei, the redlip blenny, along with other tropical reef fishes, is known to be infected by Haemogregarina-like and Haemohormidium-like parasites5 supposedly belonging to the Adeleorina; however, phylogenetics shows that these parasites are instead related to the Eimeriorina.6,7 Hybrid genomic sequencing of apicomplexan-infected O. macclurei blood recovered the entire rRNA operon of this apicomplexan parasite along with the complete mitochondrion and apicoplast genomes. Phylogenetic analyses using this new genomic information consistently place these fish-infecting apicomplexans, hereby informally named ichthyocolids, sister to the corallicolids within Coccidia. The apicoplast genome did not contain chlorophyll biosynthesis genes, providing evidence for another independent loss of this pathway within Apicomplexa. Based on the 16S rRNA gene found in the apicoplast, this group corresponds to the previously described ARL-VI. Screening of fish microbiome studies using the plastid 16S rRNA gene shows these parasites to be geographically and taxonomically widespread in fish species across the globe with implications for commercial fisheries and oceanic food webs.


Assuntos
Apicomplexa , Filogenia , Animais , Apicomplexa/genética , Apicomplexa/classificação , Peixes/parasitologia , Doenças dos Peixes/parasitologia
3.
Elife ; 122024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502570

RESUMO

The apicoplast is a four-membrane plastid found in the apicomplexans, which harbors biosynthesis and organelle housekeeping activities in the matrix. However, the mechanism driving the flux of metabolites, in and out, remains unknown. Here, we used TurboID and genome engineering to identify apicoplast transporters in Toxoplasma gondii. Among the many novel transporters, we show that one pair of apicomplexan monocarboxylate transporters (AMTs) appears to have evolved from a putative host cell that engulfed a red alga. Protein depletion showed that AMT1 and AMT2 are critical for parasite growth. Metabolite analyses supported the notion that AMT1 and AMT2 are associated with biosynthesis of isoprenoids and fatty acids. However, stronger phenotypic defects were observed for AMT2, including in the inability to establish T. gondii parasite virulence in mice. This study clarifies, significantly, the mystery of apicoplast transporter composition and reveals the importance of the pair of AMTs in maintaining the apicoplast activity in apicomplexans.


Assuntos
Apicoplastos , Transportadores de Ácidos Monocarboxílicos , Parasitos , Toxoplasma , Animais , Camundongos , Apicoplastos/metabolismo , Ácidos Graxos/metabolismo , Compostos Orgânicos/metabolismo , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA