Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 70(6): 1038-1053.e7, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29932899

RESUMO

A class of long noncoding RNAs (lncRNAs) has architectural functions in nuclear body construction; however, specific RNA domains dictating their architectural functions remain uninvestigated. Here, we identified the domains of the architectural NEAT1 lncRNA that construct paraspeckles. Systematic deletion of NEAT1 portions using CRISPR/Cas9 in haploid cells revealed modular domains of NEAT1 important for RNA stability, isoform switching, and paraspeckle assembly. The middle domain, containing functionally redundant subdomains, was responsible for paraspeckle assembly. Artificial tethering of the NONO protein to a NEAT1_2 mutant lacking the functional subdomains rescued paraspeckle assembly, and this required the NOPS dimerization domain of NONO. Paraspeckles exhibit phase-separated properties including susceptibility to 1,6-hexanediol treatment. RNA fragments of the NEAT1_2 subdomains preferentially bound NONO/SFPQ, leading to phase-separated aggregates in vitro. Thus, we demonstrate that the enrichment of NONO dimers on the redundant NEAT1_2 subdomains initiates construction of phase-separated paraspeckles, providing mechanistic insights into lncRNA-based nuclear body formation.


Assuntos
RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas , Núcleo Celular/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios Proteicos , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Estabilidade de RNA , Fatores de Transcrição/metabolismo
2.
RNA ; 29(2): 170-177, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36384963

RESUMO

The mammalian cell nucleus contains dozens of membrane-less nuclear bodies that play significant roles in various aspects of gene expression. Several nuclear bodies are nucleated by specific architectural noncoding RNAs (arcRNAs) acting as structural scaffolds. We have reported that a minor population of cellular RNAs exhibits an unusual semi-extractable feature upon using the conventional procedure of RNA preparation and that needle shearing or heating of cell lysates remarkably improves extraction of dozens of RNAs. Because semi-extractable RNAs, including known arcRNAs, commonly localize in nuclear bodies, this feature may be a hallmark of arcRNAs. Using the semi-extractability of RNA, we performed genome-wide screening of semi-extractable long noncoding RNAs to identify new candidate arcRNAs for arcRNA under hyperosmotic and heat stress conditions. After screening stress-inducible and semi-extractable RNAs, hundreds of readthrough downstream-of-gene (DoG) transcripts over several hundreds of kilobases, many of which were not detected among RNAs prepared by the conventional extraction procedure, were found to be stress-inducible and semi-extractable. We further characterized some of the abundant DoGs and found that stress-inducible transient extension of the 3'-UTR made DoGs semi-extractable. Furthermore, they were localized in distinct nuclear foci that were sensitive to 1,6-hexanediol. These data suggest that semi-extractable DoGs exhibit arcRNA-like features and our semi-extractable RNA-seq is a powerful tool to extensively monitor DoGs that are induced under specific physiological conditions.


Assuntos
Núcleo Celular , RNA Longo não Codificante , Animais , Sequência de Bases , Núcleo Celular/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Mamíferos/genética
3.
Biochem Soc Trans ; 48(5): 1967-1978, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32897323

RESUMO

RNA plays a well-established architectural role in the formation of membraneless interchromatin nuclear bodies. However, a less well-known role of RNA is in organizing chromatin, whereby specific RNAs have been found to recruit chromatin modifier proteins. Whether or not RNA can act as an architectural molecule for chromatin remains unclear, partly because dissecting the architectural role of RNA from its regulatory role remains challenging. Studies that have addressed RNA's architectural role in chromatin organization rely on in situ RNA depletion using Ribonuclease A (RNase A) and suggest that RNA plays a major direct architectural role in chromatin organization. In this review, we will discuss these findings, candidate chromatin architectural long non-coding RNAs and possible mechanisms by which RNA, along with RNA binding proteins might be mediating chromatin organization.


Assuntos
Cromatina/química , Inativação Gênica , RNA Longo não Codificante/química , RNA/química , Ribonuclease Pancreático/química , Animais , Núcleo Celular/metabolismo , Cromatina/metabolismo , Heterocromatina/metabolismo , Humanos , Íntrons , Camundongos , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Ligação Proteica , Conformação Proteica , RNA/metabolismo
4.
Biochim Biophys Acta ; 1859(1): 139-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26021608

RESUMO

Mammalian transcriptome analyses elucidated the presence of thousands of unannotated long noncoding RNAs (lncRNAs) with distinct transcriptional units. Molecular characterization and functional classification of these lncRNAs are important challenges in the next decade. A subset of these lncRNAs is the core of nuclear bodies, which are the sites of the biogenesis, maturation, storage, and sequestration of specific RNAs, proteins, and ribonucleoprotein complexes. Here, we define a class of lncRNAs termed architectural RNAs (arcRNAs) that function as the essential scaffold or platform of nuclear bodies. Presently, five lncRNAs from mammals, insects, and yeast are classified as arcRNAs. These arcRNAs are temporarily upregulated upon specific cellular stresses, in developmental stages, or in various disease conditions, and sequestrate specific regulatory proteins, thereby changing gene expression patterns. In this review, we introduce common aspects of these arcRNAs and discuss why RNA is used as the architectural component of nuclear bodies. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.


Assuntos
Regulação da Expressão Gênica , Corpos de Inclusão Intranuclear/genética , RNA Longo não Codificante/genética , Transcriptoma/genética , Animais , Expressão Gênica , Perfilação da Expressão Gênica , Insetos/genética , Mamíferos/metabolismo , RNA Longo não Codificante/classificação , Leveduras/genética
5.
Front Mol Biosci ; 9: 925058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072433

RESUMO

Paraspeckles are nuclear bodies scaffolded by RNP complexes of NEAT1_2 RNA transcripts and multiple RNA-binding proteins. The assembly of paraspeckles is coupled with the transcription of NEAT1_2. Paraspeckles form the core-shell structure, where the two terminal regions of NEAT1_2 RNP complexes compose the shell of the paraspeckle and the middle regions of these complexes compose the core. We here construct a theoretical model of paraspeckles by taking into account the transcription of NEAT1_2 in an extension of the theory of block copolymer micelles. This theory predicts that the core-shell structure of a paraspeckle is assembled by the association of the middle region of NEAT1_2 RNP complexes due to the multivalent interactions between RBPs bound to these regions and by the relative affinity of the terminal regions of the complexes to the nucleoplasm. The latter affinity results in the effective repulsive interactions between terminal regions of the RNA complexes and limits the number of complexes composing the paraspeckle. In the wild type, the repulsive interaction between the middle and terminal block dominates the thermal fluctuation. However, the thermal fluctuation can be significant in a mutant, where a part of the terminal regions of NEAT1_2 is deleted, and distributes the shortened terminal regions randomly between the shell and the core, consistent with our recent experiments. With the upregulated transcription, the shortened terminal regions of NEAT1_2 in a deletion mutant is localized to the core to decrease the repulsive interaction between the terminal regions, while the structure does not change with the upregulation in the wild type. The robustness of the structure of paraspeckles in the wild type results from the polymeric nature of NEAT1_2 complexes.

6.
Front Mol Biosci ; 9: 974772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36106018

RESUMO

Phase separation is a fundamental mechanism for compartmentalization in cells and leads to the formation of biomolecular condensates, generally containing various RNA molecules. RNAs are biomolecules that can serve as suitable scaffolds for biomolecular condensates and determine their forms and functions. Many studies have focused on biomolecular condensates formed by liquid-liquid phase separation (LLPS), one type of intracellular phase separation mechanism. We recently identified that paraspeckle nuclear bodies use an intracellular phase separation mechanism called micellization of block copolymers in their formation. The paraspeckles are scaffolded by NEAT1_2 long non-coding RNAs (lncRNAs) and their partner RNA-binding proteins (NEAT1_2 RNA-protein complexes [RNPs]). The NEAT1_2 RNPs act as block copolymers and the paraspeckles assemble through micellization. In LLPS, condensates grow without bound as long as components are available and typically have spherical shapes to minimize surface tension. In contrast, the size, shape, and internal morphology of the condensates are more strictly controlled in micellization. Here, we discuss the potential importance and future perspectives of micellization of block copolymers of RNPs in cells, including the construction of designer condensates with optimal internal organization, shape, and size according to design guidelines of block copolymers.

7.
Methods Mol Biol ; 2509: 361-393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796975

RESUMO

Phase separation is one of the fundamental processes to compartmentalize biomolecules in living cells. RNA-protein complexes (RNPs) often scaffold biomolecular condensates formed through phase separation. We here present a statistical thermodynamics approach to investigate intracellular phase separation. We first present the statistical thermodynamic theory of the liquid-liquid phase separation (LLPS) of two molecules (such as proteins and solvent molecules) and of a polymer solution (such as RNPs and solvent molecules). Condensates produced by LLPS show coarsening and/or coalescence to minimize their total surface area. In addition to the LLPS, there are other types of self-assembly, such as microphase separation, micellization, emulsification, and vesiculation, with which the growth of the assembly stops with optimal size and shape. We also describe a scaling theory of micelles of block copolymers, where their structures are analogous to the core-shell structure of paraspeckle nuclear bodies scaffolded by RNPs of NEAT1_2 long noncoding RNAs (lncRNAs) and RNA-binding proteins (RBPs). These theories treat the self-assembly of polymers in the thermodynamic equilibrium, where their concentrations and compositions do not change with time. In contrast, RNPs are produced according to the transcription of RNAs and are degraded with time. We therefore take into account the dynamical aspect of the production of RNPs in an extension of the theory of the self-assembly of soft matter. Finally, we discuss the structure of paraspeckles as an example to demonstrate that an approach combining experiment and theory is powerful to investigate the mechanism of intracellular phase separation.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA , Solventes , Termodinâmica
8.
Noncoding RNA ; 6(1)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093161

RESUMO

Nuclear bodies are membraneless, phase-separated compartments that concentrate specific proteins and RNAs in the nucleus. They are believed to serve as sites for the modification, sequestration, and storage of specific factors, and to act as organizational hubs of chromatin structure to control gene expression and cellular function. Architectural (arc) RNA, a class of long noncoding RNA (lncRNA), plays essential roles in the formation of nuclear bodies. Herein, we focus on specific arcRNAs containing short tandem repeat-enriched sequences and introduce their biological functions and recently elucidated underlying molecular mechanism. In various neurodegenerative diseases, abnormal nuclear and cytoplasmic bodies are built on disease-causing RNAs or toxic RNAs with aberrantly expanded short tandem repeat-enriched sequences. We discuss the possible analogous functions of natural arcRNAs and toxic RNAs with short tandem repeat-enriched sequences. Finally, we describe the technical utility of short tandem repeat-enriched arcRNAs as a model for exploring the structures and functions of nuclear bodies, as well as the pathogenic mechanisms of neurodegenerative diseases.

9.
Noncoding RNA ; 6(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881720

RESUMO

In the cell nuclei, various types of nuclear domains assemble as a result of transcriptional activity at specific chromosomal loci. Giant transcriptionally active lampbrush chromosomes, which form in oocyte nuclei of amphibians and birds enable the mapping of genomic sequences with high resolution and the visualization of individual transcription units. This makes avian and amphibian oocyte nuclei an advantageous model for studying locus-specific nuclear domains. We developed two strategies for identification and comprehensive analysis of the genomic loci involved in nuclear domain formation on lampbrush chromosomes. The first approach was based on the sequential FISH-mapping of BAC clones containing genomic DNA fragments with a known chromosomal position close to the locus of a nuclear domain. The second approach involved mechanical microdissection of the chromosomal region adjacent to the nuclear domain followed by the generation of FISH-probes and DNA sequencing. Furthermore, deciphering the DNA sequences from the dissected material by high throughput sequencing technologies and their mapping to the reference genome helps to identify the genomic region responsible for the formation of the nuclear domain. For those nuclear domains structured by nascent transcripts, identification of genomic loci of their formation is a crucial step in the identification of scaffold RNAs.

10.
Front Genet ; 10: 1179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824572

RESUMO

This year marks the 20th anniversary of the discovery that the nucleolus can temporarily immobilize proteins, a process known as nucleolar sequestration. This review reflects on the progress made to understand the physiological roles of nucleolar sequestration and the mechanisms involved in the immobilization of proteins. We discuss how protein immobilization can occur through a highly choreographed amyloidogenic program that converts the nucleolus into a large fibrous organelle with amyloid-like characteristics called the amyloid body (A-body). We propose a working model of A-body biogenesis that includes a role for low-complexity ribosomal intergenic spacer RNA (rIGSRNA) and a discrete peptide sequence, the amyloid-converting motif (ACM), found in many proteins that undergo immobilization. Amyloid bodies provide a unique model to study the multistep assembly of a membraneless compartment and may provide alternative insights into the pathological amyloidogenesis involved in neurological disorders.

11.
Cell Rep ; 24(7): 1713-1721.e4, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110628

RESUMO

Amyloid bodies (A-bodies) are inducible membrane-less nuclear compartments composed of heterogeneous proteins that adopt an amyloid-like state. A-bodies are seeded by noncoding RNA derived from stimuli-specific loci of the rDNA intergenic spacer (rIGSRNA). This raises the question of how rIGSRNA recruits a large population of diverse proteins to confer A-body identity. Here, we show that long low-complexity dinucleotide repeats operate as the architectural determinants of rIGSRNA. On stimulus, clusters of rIGSRNA with simple cytosine/uracil (CU) or adenosine/guanine (AG) repeats spanning hundreds of nucleotides accumulate in the nucleolar area. The low-complexity sequences facilitate charge-based interactions with short cationic peptides to produce multiple nucleolar liquid-like foci. Local concentration of proteins with fibrillation propensity in these nucleolar foci induces the formation of an amyloidogenic liquid phase that seeds A-bodies. These results demonstrate the physiological importance of low-complexity RNA and repetitive regions of the genome often dismissed as "junk" DNA.


Assuntos
Proteínas Amiloidogênicas/química , Nucléolo Celular/genética , DNA Intergênico/química , DNA Ribossômico/química , RNA Ribossômico/química , RNA não Traduzido/química , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Animais , Sequência de Bases , Hipóxia Celular , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , DNA Intergênico/genética , DNA Intergênico/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Repetições de Dinucleotídeos , Expressão Gênica , Resposta ao Choque Térmico , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Camundongos , Transição de Fase , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Eletricidade Estática , Estresse Fisiológico , Imagem com Lapso de Tempo
12.
Bio Protoc ; 7(8): e2232, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34541231

RESUMO

The mammalian cell nucleus is highly organized and contains membraneless nuclear bodies (NBs) characterized by distinct resident factors. The NBs are thought to serve as sites for biogenesis and storage of certain RNA and protein factors as well as assembly of ribonucleoprotein complexes. Some NBs are formed with architectural RNAs (arcRNAs) as their structural scaffolds and additional NBs likely remain unidentified in mammalian cells. Here, we describe an experimental protocol to search for new NBs built on certain arcRNAs. RNase-sensitive NBs were identified by monitoring nuclear foci visualized by tagging thousands of human cDNA products.

13.
Mol Cells ; 40(12): 889-896, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-29276943

RESUMO

Nuclear bodies are subnuclear, spheroidal, and membraneless compartments that concentrate specific proteins and/or RNAs. They serve as sites of biogenesis, storage, and sequestration of specific RNAs, proteins, or ribonucleoprotein complexes. Recent studies reveal that a subset of nuclear bodies in various eukaryotic organisms is constructed using architectural long noncoding RNAs (arcRNAs). Here, we describe the unifying mechanistic principles of the construction and function of these bodies, especially focusing on liquid-liquid phase separation induced by architectural molecules that form multiple weakly adhesive interactions. We also discuss three possible advantages of using arcRNAs rather than architectural proteins to build the bodies: position-specificity, rapidity, and economy in sequestering nucleic acid-binding proteins. Moreover, we introduce two recently devised methods to discover novel arcRNA-constructed bodies; one that focuses on the RNase-sensitivity of these bodies, and another that focuses on "semi-extractability" of arcRNAs.


Assuntos
Núcleo Celular/metabolismo , RNA Longo não Codificante/genética , Humanos , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA