Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microbiologyopen ; 12(1): e1345, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36825884

RESUMO

Under very cold conditions, delicate ice-crystal structures called frost flowers emerge on the surface of newly formed sea ice. These understudied, ephemeral structures include saline brine, organic material, inorganic nutrients, and bacterial and archaeal communities in their brine channels. Hitherto, only a few frost flowers have been studied during spring and these have been reported to be dominated by Rhizobia or members of the SAR11 clade. Here we report on the microbiome of frost flowers sampled during the winter and polar night in the Barents Sea. There was a distinct difference in community profile between the extracted DNA and RNA, but both were dominated by members of the SAR11 clade (78% relative abundance and 41.5% relative activity). The data further suggested the abundance and activity of Cand. Nitrosopumilus, Nitrospinia, and Nitrosomonas. Combined with the inference of marker genes based on the 16S rRNA gene data, this indicates that sulfur and nitrogen cycling are likely the major metabolism in these ephemeral structures.


Assuntos
Bactérias , Microbiota , RNA Ribossômico 16S/genética , Regiões Árticas , Archaea/genética , Flores , Camada de Gelo/microbiologia
2.
Microorganisms ; 10(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014036

RESUMO

The Arctic is warming 2-3 times faster than the global average, leading to a decrease in Arctic sea ice extent, thickness, and associated changes in sea ice structure. These changes impact sea ice habitat properties and the ice-associated ecosystems. Sea-ice algal blooms provide various algal-derived carbon sources for the bacterial and archaeal communities within the sea ice. Here, we detail the transition of these communities from winter through spring to early summer during the Norwegian young sea ICE (N-ICE2015) expedition. The winter community was dominated by the archaeon Candidatus Nitrosopumilus and bacteria belonging to the Gammaproteobacteria (Colwellia, Kangiellaceae, and Nitrinocolaceae), indicating that nitrogen-based metabolisms, particularly ammonia oxidation to nitrite by Cand. Nitrosopumilus was prevalent. At the onset of the vernal sea-ice algae bloom, the community shifted to the dominance of Gammaproteobacteria (Kangiellaceae, Nitrinocolaceae) and Bacteroidia (Polaribacter), while Cand. Nitrosopumilus almost disappeared. The bioinformatically predicted carbohydrate-active enzymes increased during spring and summer, indicating that sea-ice algae-derived carbon sources are a strong driver of bacterial and archaeal community succession in Arctic sea ice during the change of seasons. This implies a succession from a nitrogen metabolism-based winter community to an algal-derived carbon metabolism-based spring/ summer community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA