Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(5): 2303-2312, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38263620

RESUMO

Dissimilatory arsenate reduction contributes a large proportion of arsenic flux from flooded paddy soil, which is closely linked to soil organic carbon input and efflux. Humic acid (HA) represents a natural ingredient in soil and is shown to enhance microbial arsenate respiration to promote arsenic mobility. However, the community and function profiles of metabolically active arsenate-respiring bacteria and their interactions with HA in paddy soil remain unclear. To probe this linkage, we performed a genome-centric comparison of potentially active arsenate-respiring bacteria in anaerobic microcosms amended with 13C-lactate and HA by combining stable-isotope probing with genome-resolved metagenomics. Indeed, HA greatly accelerated the microbial reduction of arsenate to arsenite. Enrichment of bacteria that harbor arsenate-respiring reductase genes (arrA) in HA-enriched 13C-DNA was confirmed by metagenomic binning, which are affiliated with Firmicutes (mainly Desulfitobacterium, Bacillus, Brevibacillus, and Clostridia) and Acidobacteria. Characterization of reference extracellular electron transfer (EET)-related genes in these arrA-harboring bacteria supports the presence of EET-like genes, with partial electron-transport chain genes identified. This suggests that Gram-positive Firmicutes- and Acidobacteria-related members may harbor unspecified EET-associated genes involved in metal reduction. Our findings highlight the link between soil HA and potentially active arsenate-respiring bacteria, which can be considered when using HA for arsenic removal.


Assuntos
Arseniatos , Arsênio , Substâncias Húmicas , Solo , Carbono , Bactérias/genética , Microbiologia do Solo
2.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38573838

RESUMO

Seleniivibrio woodruffii strain S4T is an obligate anaerobe belonging to the phylum Deferribacterota. It was isolated for its ability to respire selenate and was also found to respire arsenate. The high-quality draft genome of this bacterium is 2.9 Mbp, has a G+C content of 48%, 2762 predicted genes of which 2709 are protein-coding, and 53 RNA genes. An analysis of the genome focusing on the genes encoding for molybdenum-containing enzymes (molybdoenzymes) uncovered a remarkable number of genes encoding for members of the dimethylsulfoxide reductase family of proteins (DMSOR), including putative reductases for selenate and arsenate respiration, as well as genes for nitrogen fixation. Respiratory molybdoenzymes catalyze redox reactions that transfer electrons to a variety of substrates that can act as terminal electron acceptors for energy generation. Seleniivibrio woodruffii strain S4T also has essential genes for molybdate transporters and the biosynthesis of the molybdopterin guanine dinucleotide cofactors characteristic of the active centers of DMSORs. Phylogenetic analysis revealed candidate respiratory DMSORs spanning nine subfamilies encoded within the genome. Our analysis revealed the untapped potential of this interesting microorganism and expanded our knowledge of molybdoenzyme co-occurrence.


Assuntos
Arseniatos , Bactérias , Genômica , Arseniatos/metabolismo , Filogenia , Ácido Selênico , Oxirredução , Molibdênio
3.
J Environ Sci (China) ; 137: 237-244, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37980011

RESUMO

Arsenic is a ubiquitous environmental pollutant. Microbe-mediated arsenic bio-transformations significantly influence arsenic mobility and toxicity. Arsenic transformations by soil and aquatic organisms have been well documented, while little is known regarding effects due to endophytic bacteria. An endophyte Pseudomonas putida ARS1 was isolated from rice grown in arsenic contaminated soil. P. putida ARS1 shows high tolerance to arsenite (As(III)) and arsenate (As(V)), and exhibits efficient As(V) reduction and As(III) efflux activities. When exposed to 0.6 mg/L As(V), As(V) in the medium was completely converted to As(III) by P. putida ARS1 within 4 hr. Genome sequencing showed that P. putida ARS1 has two chromosomal arsenic resistance gene clusters (arsRCBH) that contribute to efficient As(V) reduction and As(III) efflux, and result in high resistance to arsenicals. Wolffia globosa is a strong arsenic accumulator with high potential for arsenic phytoremediation, which takes up As(III) more efficiently than As(V). Co-culture of P. putida ARS1 and W. globosa enhanced arsenic accumulation in W. globosa by 69%, and resulted in 91% removal of arsenic (at initial concentration of 0.6 mg/L As(V)) from water within 3 days. This study provides a promising strategy for in situ arsenic phytoremediation through the cooperation of plant and endophytic bacterium.


Assuntos
Arsênio , Pseudomonas putida , Arseniatos , Arsênio/análise , Pseudomonas putida/genética , Biodegradação Ambiental , Solo
4.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688790

RESUMO

Microbially driven Fe(II) oxidation is vital for Fe-cycling processes. In the present study, a novel strain of nitrate-dependent Fe-oxidizing bacteria (FOB) was isolated from the riparian zone sediment of the Hanjiang River, China. It was identified as Comamonas terrigena strain HJ-2. The strain HJ-2 oxidized 2.80 mmol l-1 Fe(II) within 144 h to form Fe(III)/Fe(II) complex on the cell surface using 1.63 mmol l-1 nitrate as an electron acceptor. The formed nitrite from nitrate reduction chemically oxidized Fe(II). Surprisingly, this strain also reduced nitrilotriacetic iron to form 0.5 mmol l-1 Fe(II) in 120 h in anaerobic conditions primarily mediated by the NADH flavin oxidoreductase. Besides, the strain completely reduced 0.18 mmol l-1 nitrobenzene to aniline in 24 days and 15.6 µmol l-1 arsenate to arsenite in 7 days due to the existence of nitro and arsenate reductases. However, the Fe(II) inhibited the reduction of nitrate, nitrobenzene, and arsenate, possibly due to the impeding of transport of the solutes through the membrane or the synthesis of the related enzymes. These results provide new knowledge about the Fe(II)-cycling and the fate of some pollutants in the riparian zone. It also informed that some bacteria have universal functions on elements and contaminants transformation.


Assuntos
Comamonas , Nitratos , Nitratos/metabolismo , Arseniatos/metabolismo , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Comamonas/metabolismo , Bactérias/metabolismo , Oxirredução
5.
J Environ Sci (China) ; 125: 582-592, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375940

RESUMO

Many investigations suggest that dissimilatory arsenate-respiring prokaryotes (DARPs) play a key role in stimulating reductive mobilization of As from solid phase into groundwater, but it is not clear how environmental Mn(II) affects the DARPs-mediated reductive mobilization of arsenic. To resolve this issue, we collected soil samples from a realgar tailings-affected area. We found that there were diverse arsenate-respiratory reductase (arr) genes in the soils. The microbial communities had high arsenate-respiring activity, and were able to efficiently stimulate the reductive mobilization of As. Compared to the microcosms without Mn(II), addition of 10 mmol/L Mn(II) to the microcosms led to 23.99%-251.79% increases in the microbial mobilization of As, and led to 133.3%-239.2% increases in the abundances of arr genes. We further isolated a new cultivable DARP, Bacillus sp. F11, from the arsenic-contaminated soils. It completely reduced 1 mmol/L As(V) in 5 days under the optimal reaction conditions. We further found that it was able to efficiently catalyze the reductive mobilization and release of As from the solid phase; the addition of 2 mmol/L Mn(II) led to 98.49%-248.78% increases in the F11 cells-mediated reductive mobilization of As, and 70.6%-104.4% increases in the arr gene abundances. These data suggest that environmental Mn(II) markedly increased the DARPs-mediated reductive mobilization of As in arsenic-contaminated soils. This work provided a new insight into the close association between the biogeochemical cycles of arsenic and manganese.


Assuntos
Arsênio , Água Subterrânea , Arsênio/metabolismo , Arseniatos/metabolismo , Solo
6.
Environ Sci Technol ; 56(16): 11845-11856, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35920083

RESUMO

Microbial oxidation of organic compounds can promote arsenic release by reducing soil-associated arsenate to the more mobile form arsenite. While anaerobic oxidation of methane has been demonstrated to reduce arsenate, it remains elusive whether and to what extent aerobic methane oxidation (aeMO) can contribute to reductive arsenic mobilization. To fill this knowledge gap, we performed incubations of both microbial laboratory cultures and soil samples from arsenic-contaminated agricultural fields in China. Incubations with laboratory cultures showed that aeMO could couple to arsenate reduction, wherein the former bioprocess was carried out by aerobic methanotrophs and the latter by a non-methanotrophic bacterium belonging to a novel and uncultivated representative of Burkholderiaceae. Metagenomic analyses combined with metabolite measurements suggested that formate served as the interspecies electron carrier linking aeMO to arsenate reduction. Such coupled bioprocesses also take place in the real world, supported by a similar stoichiometry and gene activity in the incubations with natural paddy soils, and contribute up to 76.2% of soil-arsenic mobilization into pore waters in the top layer of the soils where oxygen was present. Overall, this study reveals a previously overlooked yet significant contribution of aeMO to reductive arsenic mobilization.


Assuntos
Arsênio , Arseniatos , Arsênio/metabolismo , Metano , Oxirredução , Solo , Microbiologia do Solo
7.
Proc Natl Acad Sci U S A ; 116(20): 9925-9930, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31036654

RESUMO

Microbial capacity to metabolize arsenic is ancient, arising in response to its pervasive presence in the environment, which was largely in the form of As(III) in the early anoxic ocean. Many biological arsenic transformations are aimed at mitigating toxicity; however, some microorganisms can respire compounds of this redox-sensitive element to reap energetic gains. In several modern anoxic marine systems concentrations of As(V) are higher relative to As(III) than what would be expected from the thermodynamic equilibrium, but the mechanism for this discrepancy has remained unknown. Here we present evidence of a complete respiratory arsenic cycle, consisting of dissimilatory As(V) reduction and chemoautotrophic As(III) oxidation, in the pelagic ocean. We identified the presence of genes encoding both subunits of the respiratory arsenite oxidase AioA and the dissimilatory arsenate reductase ArrA in the Eastern Tropical North Pacific (ETNP) oxygen-deficient zone (ODZ). The presence of the dissimilatory arsenate reductase gene arrA was enriched on large particles (>30 um), similar to the forward bacterial dsrA gene of sulfate-reducing bacteria, which is involved in the cryptic cycling of sulfur in ODZs. Arsenic respiratory genes were expressed in metatranscriptomic libraries from the ETNP and the Eastern Tropical South Pacific (ETSP) ODZ, indicating arsenotrophy is a metabolic pathway actively utilized in anoxic marine water columns. Together these results suggest arsenic-based metabolisms support organic matter production and impact nitrogen biogeochemical cycling in modern oceans. In early anoxic oceans, especially during periods of high marine arsenic concentrations, they may have played a much larger role.


Assuntos
Anaerobiose , Organismos Aquáticos/metabolismo , Arsênio/metabolismo , Oxirredução , Microbiologia da Água , Organismos Aquáticos/genética , Metagenoma , Oceano Pacífico
8.
Indian J Microbiol ; 62(3): 456-467, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35974925

RESUMO

Indiscriminate discharge of heavy metals/metalloids from different sources into the sustainable agro-ecosystem is a major global concern for food security and human health. Arsenic (As), categorized as group one human carcinogen is a quintessential toxic metalloid that alters the microbial compositions and functions, induce physiological and metabolic changes in plants and contaminate surface/ground water. The management of arsenic toxicity, therefore, becomes imminent. Acknowledging the arsenic threat, the study was aimed at identifying arsenic resistant bacteria and evaluating its arsenic removal/detoxification potential. Of the total 118 bacterial isolates recovered from arsenic rich environment, the bacterial strain RSC3 demonstrating highest As tolerance was identified as Enterobacter cloacae by 16S rRNA gene sequence analysis. Enterobacter cloacae tolerated high concentration (6000 ppm) of As and exhibited 0.55 h-1 of specific growth rate as calculated from growth kinetics data. Strain RSC3 also displayed varying level of resistance to other heavy metals and many antibacterial drugs in plate bioassay. The bacterial strain RSC3 possessed gene (arsC) which causes transformation of arsenate to arsenite. The arsenate uptake and efflux of the bacterial cells was revealed by high throughput techniques such as AAS, SEM/TEM and EDX. The simultaneous As reducing ability, and multi metal/multi-antibiotics resistance potentials of E. cloacae provides a promising option in the microbes based remediation of As contaminated environments.

9.
Ecotoxicol Environ Saf ; 213: 112054, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33601170

RESUMO

Spent mushroom compost (SMC) is a lignocellulose-rich waste material commonly used in the passive treatment of heavy metal-contaminated environments. In this study, we investigated the bioremediation potential of SMC against an inorganic form of arsenic, examining the individual abiotic and biotic transformations carried out by SMC. We demonstrated, that key SMC physiological groups of bacteria (denitrifying, cellulolytic, sulfate-reducing, and heterotrophic) are resistant to arsenites and arsenates, while the microbial community in SMC is also able to oxidize As(III) and reduce As(V) in respiratory metabolisms, although the SMC did not contain any As. We showed, that cooperation between arsenate and sulfate-reducing bacteria led to the precipitation of AsxSy. We also found evidence of the significant role organic acids may play in arsenic complexation, and we demonstrated the occurrence of As-binding proteins in the SMC. Furthermore, we confirmed, that biofilm produced by the microbial community in SMC was able to trap As(V) ions. We postulated, that the above-mentioned transformations are responsible for the sorption efficiency of As(V) (up to 25%) and As(III) (up to 16%), as well as the excellent buffering properties of SMC observed in the sorption experiments.


Assuntos
Agaricales/metabolismo , Arsênio/metabolismo , Biodegradação Ambiental , Compostagem , Arseniatos , Arsênio/análise , Arsenitos/metabolismo , Bactérias/metabolismo , Biotransformação , Metais Pesados/metabolismo , Oxirredução
10.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31101608

RESUMO

The reduction of arsenate [As(V)] to arsenite [As(III)] by dissimilatory As(V)-reducing bacteria, such as Geobacter spp., may play a significant role in arsenic release from anaerobic sediments into groundwater. The biochemical and molecular mechanisms by which these bacteria cope with this toxic element remain unclear. In this study, the expression of several genes involved in arsenic respiration (arr) and resistance (ars) was determined using Geobacter sp. strain OR-1, the only cultured Geobacter strain capable of As(V) respiration. In addition, proteins expressed differentially under As(V)-respiring conditions were identified by semiquantitative proteomic analysis. Dissimilatory As(V) reductase (Arr) of strain OR-1 was localized predominantly in the periplasmic space, and the transcription of its gene (arrA) was upregulated under As(V)-respiring conditions. The transcription of the detoxifying As(V) reductase gene (arsC) was also upregulated, but its induction required 500 times higher concentration of As(III) (500 µM) than did the arrA gene. Comparative proteomic analysis revealed that in addition to the Arr and Ars proteins, proteins involved in the following processes were upregulated under As(V)-respiring conditions: (i) protein folding and assembly for rescue of proteins with oxidative damage, (ii) DNA replication and repair for restoration of DNA breaks, (iii) anaplerosis and gluconeogenesis for sustainable energy production and biomass formation, and (iv) protein and nucleotide synthesis for the replacement of damaged proteins and nucleotides. These results suggest that strain OR-1 copes with arsenic stress by orchestrating pleiotropic processes that enable this bacterium to resist and actively metabolize arsenic.IMPORTANCE Dissimilatory As(V)-reducing bacteria, such as Geobacter spp., play significant roles in arsenic release and contamination in groundwater and threaten the health of people worldwide. However, the biochemical and molecular mechanisms by which these bacteria cope with arsenic toxicity remain unclear. In this study, it was found that both respiratory and detoxifying As(V) reductases of a dissimilatory As(V)-reducing bacterium, Geobacter sp. strain OR-1, were upregulated under As(V)-respiring conditions. In addition, various proteins expressed specifically or more abundantly in strain OR-1 under arsenic stress were identified. Strain OR-1 actively metabolizes arsenic while orchestrating various metabolic processes that repair oxidative damage caused by arsenic. Such information is useful in assessing and identifying possible countermeasures for the prevention of microbial arsenic release in nature.


Assuntos
Arsênio/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Geobacter/genética , Arseniatos/metabolismo , Arsenitos/metabolismo , Proteínas de Bactérias/metabolismo , Geobacter/metabolismo , Sedimentos Geológicos/microbiologia , Oxirredução
11.
Int J Mol Sci ; 20(5)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813619

RESUMO

Shewanella sp. O23S is a dissimilatory arsenate reducing bacterial strain involved in arsenic transformations within the abandoned gold mine in Zloty Stok (SW Poland). Previous physiological studies revealed that O23S may not only release arsenic from minerals, but also facilitate its immobilization through co-precipitation with reduced sulfur species. Given these uncommon, complementary characteristics and the application potential of the strain in arsenic-removal technologies, its genome (~5.3 Mbp), consisting of a single chromosome, two large plasmids (pSheA and pSheB) and three small plasmid-like phages (pSheC-E) was sequenced and annotated. Genes encoding putative proteins involved in heavy metal transformations, antibiotic resistance and other phenotypic traits were identified. An in-depth comparative analysis of arsenic respiration (arr) and resistance (ars) genes and their genetic context was also performed, revealing that pSheB carries the only copy of the arr genes, and a complete ars operon. The plasmid pSheB is therefore a unique natural vector of these genes, providing the host cells arsenic respiration and resistance abilities. The functionality of the identified genes was determined based on the results of the previous and additional physiological studies, including: the assessment of heavy metal and antibiotic resistance under various conditions, adhesion-biofilm formation assay and BiologTM metabolic preferences test. This combined genetic and physiological approach shed a new light on the capabilities of O23S and their molecular basis, and helped to confirm the biosafety of the strain in relation to its application in bioremediation technologies.


Assuntos
Arseniatos/metabolismo , Genes Bacterianos , Genômica , Plasmídeos/genética , Shewanella/genética , Shewanella/metabolismo , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Cromossomos Bacterianos/genética , Elementos de DNA Transponíveis/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Oxirredução , Filogenia , Mapeamento Físico do Cromossomo , Shewanella/crescimento & desenvolvimento
12.
Arch Microbiol ; 199(2): 191-201, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27663709

RESUMO

A novel arsenic (As)-resistant, arsenate-respiring, alkane-metabolizing bacterium KAs 5-22T, isolated from As-rich groundwater of West Bengal was characterized by physiological and genomic properties. Cells of strain KAs 5-22T were Gram-stain-negative, rod-shaped, motile, and facultative anaerobic. Growth occurred at optimum of pH 6.0-7.0, temperature 30 °C. 16S rRNA gene affiliated the strain KAs 5-22T to the genus Rhizobium showing maximum similarity (98.4 %) with the type strain of Rhizobium naphthalenivorans TSY03bT followed by (98.0 % similarity) Rhizobium selenitireducens B1T. The genomic G + C content was 59.4 mol%, and DNA-DNA relatedness with its closest phylogenetic neighbors was 50.2 %. Chemotaxonomy indicated UQ-10 as the major quinone; phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol as major polar lipids; C16:0, C17:0, 2-OH C10:0, 3-OH C16:0, and unresolved C18:1 É·7C/É·9C as predominant fatty acids. The cells were found to reduce O2, As5+, NO3-, SO42- and Fe3+ as alternate electron acceptors. The strain's ability to metabolize dodecane or other alkanes as sole carbon source using As5+ as terminal electron acceptor was supported by the presence of genes encoding benzyl succinate synthase (bssA like) and molybdopterin-binding site (mopB) of As5+ respiratory reductase (arrA). Differential phenotypic, chemotaxonomic, genotypic as well as physiological properties revealed that the strain KAs 5-22T is separated from its nearest recognized Rhizobium species. On the basis of the data presented, strain KAs 5-22T is considered to represent a novel species of the genus Rhizobium, for which the name Rhizobium arsenicireducens sp. nov. is proposed as type strain (=LMG 28795T=MTCC 12115T).


Assuntos
Alcanos/metabolismo , Arseniatos/metabolismo , Arsênio/análise , Água Subterrânea/microbiologia , Rhizobium/classificação , Rhizobium/metabolismo , Poluentes Químicos da Água/análise , Ácidos Graxos/química , Água Subterrânea/química , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Rhizobium/isolamento & purificação
13.
Biotechnol Bioeng ; 113(3): 522-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26333155

RESUMO

Arsenic (As) is a highly toxic metalloid that has been identified at high concentrations in groundwater in certain locations around the world. Concurrent microbial reduction of arsenate (As(V) ) and sulfate (SO4 (2-) ) can result in the formation of poorly soluble arsenic sulfide minerals (ASM). The objective of this research was to study As biomineralization in a minimal iron environment for the bioremediation of As-contaminated groundwater using simultaneous As(V) and SO4 (2-) reduction. A continuous-flow anaerobic bioreactor was maintained at slightly acidic pH (6.25-6.50) and fed with As(V) and SO4 (2-) , utilizing ethanol as an electron donor for over 250 d. A second bioreactor running under the same conditions but lacking SO4 (2-) was operated as a control to study the fate of As (without S). The reactor fed with SO4 (2-) removed an average 91.2% of the total soluble As at volumetric rates up to 2.9 mg As/(L · h), while less than 5% removal was observed in the control bioreactor. Soluble S removal occurred with an S to As molar ratio of 1.2, suggesting the formation of a mixture of orpiment- (As2 S3 ) and realgar-like (AsS) solid phases. Solid phase characterization using K-edge X-ray absorption spectroscopy confirmed the formation of a mixture of As2 S3 and AsS. These results indicate that a bioremediation process relying on the addition of a simple, low-cost electron donor offers potential to promote the removal of As from groundwater with naturally occurring or added SO4 (2-) by precipitation of ASM.


Assuntos
Arsênio/metabolismo , Arsenicais/metabolismo , Reatores Biológicos/microbiologia , Sulfetos/metabolismo , Purificação da Água , Anaerobiose , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Minerais/metabolismo , Espectroscopia por Absorção de Raios X
14.
J Environ Sci (China) ; 47: 165-173, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27593283

RESUMO

A mesophilic, Gram-negative, arsenite[As(III)]-oxidizing and arsenate[As(V)]-reducing bacterial strain, Pseudomonas sp. HN-2, was isolated from an As-contaminated soil. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain was closely related to Pseudomonas stutzeri. Under aerobic conditions, this strain oxidized 92.0% (61.4µmol/L) of arsenite to arsenate within 3hr of incubation. Reduction of As(V) to As(III) occurred in anoxic conditions. Pseudomonas sp. HN-2 is among the first soil bacteria shown to be capable of both aerobic As(III) oxidation and anoxic As(V) reduction. The strain, as an efficient As(III) oxidizer and As(V) reducer in Pseudomonas, has the potential to impact arsenic mobility in both anoxic and aerobic environments, and has potential application in As remediation processes.


Assuntos
Arsênio/metabolismo , Biotransformação , Pseudomonas/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Arsênio/análise , Biodegradação Ambiental , China , Oxirredução , Pseudomonas/classificação , Pseudomonas/genética , Poluentes do Solo/análise
15.
Int J Mol Sci ; 16(7): 14409-27, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26121297

RESUMO

The purpose of this study was a detailed characterization of Shewanella sp. O23S, a strain involved in arsenic transformation in ancient gold mine waters contaminated with arsenic and other heavy metals. Physiological analysis of Shewanella sp. O23S showed that it is a facultative anaerobe, capable of growth using arsenate, thiosulfate, nitrate, iron or manganite as a terminal electron acceptor, and lactate or citrate as an electron donor. The strain can grow under anaerobic conditions and utilize arsenate in the respiratory process in a broad range of temperatures (10-37 °C), pH (4-8), salinity (0%-2%), and the presence of heavy metals (Cd, Co, Cr, Cu, Mn, Mo, Se, V and Zn). Under reductive conditions this strain can simultaneously use arsenate and thiosulfate as electron acceptors and produce yellow arsenic (III) sulfide (As2S3) precipitate. Simulation of As-removal from water containing arsenate (2.5 mM) and thiosulfate (5 mM) showed 82.5% efficiency after 21 days of incubation at room temperature. Based on the obtained results, we have proposed a model of a microbially mediated system for self-cleaning of mine waters contaminated with arsenic, in which Shewanella sp. O23S is the main driving agent.


Assuntos
Arseniatos/metabolismo , Inativação Metabólica , Shewanella/metabolismo , Purificação da Água/métodos , Arseniatos/toxicidade , Respiração Celular , Oxirredução , Shewanella/efeitos dos fármacos
16.
Artigo em Inglês | MEDLINE | ID: mdl-25137536

RESUMO

Nine arsenic (As)-resistant bacterial strains isolated from As-rich groundwater samples of West Bengal were characterized to elucidate their potential in geomicrobial transformation and bioremediation aspects. The 16S rRNA gene-based phylogenetic analysis revealed that the strains were affiliated with genera Actinobacteria, Microbacterium, Pseudomonas and Rhizobium. The strains exhibited high resistance to As [Minimum inhibitory concentration (MIC) ≥ 10 mM As(3+) and MIC ≥ 450 mM As(5+)] and other heavy metals, e.g., Cu(2+), Cr(2+), Ni(2+), etc. (MIC ≥ 2 mM) as well as As transformation (As(3+) oxidation and As(5+) reduction) capabilities. Their ability to utilize diverse carbon source(s) including hydrocarbons and different alternative electron acceptor(s) (As(5+), SO4(2-), S2O3(2-), etc.) during anaerobic growth was noted. Growth at wide range of pH, temperature and salinity, production of siderophore and biofilm were observed. Together with these, growth pattern and transformation kinetics indicated a high As(3+) oxidation activity of the isolates Rhizobium sp. CAS934i, Microbacterium sp. CAS905i and Pseudomonas sp. CAS912i. A positive relation between high As(3+) resistance and As(3+) oxidation and the supportive role of As(3+) in bacterial growth was noted. The results highlighted As(3+) oxidation process and metabolic repertory of strains indigenous to contaminated groundwater and indicates their potential in As(3+) detoxification. Thus, such metabolically well equipped bacterial strains with highest As(3+) oxidation activities may be used for bioremediation of As contaminated water and effluents in the near future.


Assuntos
Arsenitos/metabolismo , Bactérias/metabolismo , Água Subterrânea/microbiologia , Arsênio/metabolismo , Arsênio/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Genes de RNAr , Índia , Metais Pesados/toxicidade , Testes de Sensibilidade Microbiana , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
17.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38900902

RESUMO

Arsenate [As(V)] reduction is a major cause of arsenic (As) release from soils, which threatens more than 200 million people worldwide. While heterotrophic As(V) reduction has been investigated extensively, the mechanism of chemolithotrophic As(V) reduction is less studied. Since As is frequently found as a sulfidic mineral in the environment, microbial mediated sulfur oxidation coupled to As(V) reduction (SOAsR), a chemolithotrophic process, may be more favorable in sites impacted by oligotrophic mining (e.g. As-contaminated mine tailings). While SOAsR is thermodynamically favorable, knowledge regarding this biogeochemical process is still limited. The current study suggested that SOAsR was a more prevalent process than heterotrophic As(V) reduction in oligotrophic sites, such as mine tailings. The water-soluble reduced sulfur concentration was predicted to be one of the major geochemical parameters that had a substantial impact on SOAsR potentials. A combination of DNA stable isotope probing and metagenome binning revealed members of the genera Sulfuricella, Ramlibacter, and Sulfuritalea as sulfur oxidizing As(V)-reducing bacteria (SOAsRB) in mine tailings. Genome mining further expanded the list of potential SOAsRB to diverse phylogenetic lineages such as members associated with Burkholderiaceae and Rhodocyclaceae. Metagenome analysis using multiple tailing samples across southern China confirmed that the putative SOAsRB were the dominant As(V) reducers in these sites. Together, the current findings expand our knowledge regarding the chemolithotrophic As(V) reduction process, which may be harnessed to facilitate future remediation practices in mine tailings.


Assuntos
Arseniatos , Mineração , Oxirredução , Filogenia , Microbiologia do Solo , Enxofre , Arseniatos/metabolismo , Enxofre/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Ecossistema , Metagenoma , RNA Ribossômico 16S/genética , Poluentes do Solo/metabolismo
18.
J Hazard Mater ; 476: 135137, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39024770

RESUMO

Arsenic is a toxic element widely distributed in the Earth's crust and ranked as a class I human carcinogen. Microbial metabolism makes significant contributions to arsenic detoxification, migration and transformation. Nowadays, research on arsenic is primarily in areas affected by arsenic pollution associated with human health activities. However, the biogeochemical traits of arsenic in the global marine ecosystem remain to be explicated. In this study, we revealed that seawater environments were primarily governed by the process of arsenate reduction to arsenite, while arsenite methylation was predominant in marine sediments which may serve as significant sources of arsenic emission into the atmosphere. Significant disparities existed in the distribution patterns of the arsenic cycle between surface and deep seawaters at middle and low latitudes, whereas these situations tend to be similar in the Arctic and Antarctic oceans. Significant variations were also observed in the taxonomic diversity and core microbial community of arsenic cycling across different marine environments. Specifically, γ-proteobacteria played a pivotal role in the arsenic cycle in the whole marine environment. Temperature, dissolved oxygen and phosphate were the crucial factors that related to these differentiations in seawater environments. Overall, our study contributes to a deeper understanding of the marine arsenic cycle.


Assuntos
Arsênio , Bactérias , Sedimentos Geológicos , Água do Mar , Poluentes Químicos da Água , Água do Mar/microbiologia , Água do Mar/química , Arsênio/metabolismo , Arsênio/análise , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Arseniatos/metabolismo , Microbiota
19.
Water Res ; 254: 121423, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461598

RESUMO

Biological sulfidogenic processes based on sulfate-reducing bacteria (SRB) are not suitable for arsenic (As)-containing acid mine drainage (AMD) treatment because of the formation of the mobile thioarsenite during sulfate reduction. In contrast, biological sulfidogenic processes based on sulfur-reducing bacteria (S0RB) produce sulfide without pH increase, which could achieve more effective As removal than the SRB-based process. However, the reduction ability and toxicity tolerance of S0RB to As remains mysterious, which may substantially affect the practical applicability of this process when treating arsenate (As(V))-containing AMD. Thus, this study aims to develop a biological sulfur reduction process driven by S0RB, and explore its long-term performance on As(V) removal and microbial community evolution. Operating under moderately acidic conditions (pH=4.0), the presence of 10 mg/L As(V) significantly suppressed the activity of S0RB, leading to the failure of As(V) removal. Surprisingly, a drop in pH to 3.0 enhanced the tolerance of S0RB to As toxicity, allowing for efficient sulfide production (396±102 mg S/L) through sulfur reduction. Consequently, effective and stable removal of As(V) (99.9 %) was achieved, even though the sulfidogenic bacteria were exposed to high levels of As(V) (42 mg/L) in long-term trials. Spectral and spectroscopic analysis showed that As-bearing sulfide minerals were present in the bioreactor. Remarkably, the presence of As(V) induced notable changes in the microbial community composition, with Desulfurella and Clostridium identified as predominate sulfur reducers. The qPCR result further revealed an increase in the concentration of functional genes related to As transport (asrA and arsB) in the bioreactor sludge as the pH decreased from 4.0 to 3.0. This suggests the involvement of microorganisms carrying asrA and arsB in an As transport process. Furthermore, metagenomic binning demonstrated that Desulfurella contained essential genes associated with sulfur reduction and As transportation, indicating its genetic potential for sulfide production and As tolerance. In summary, this study underscores the effectiveness of the biological sulfur reduction process driven by S0RB in treating As(V)-contaminated AMD. It offers insights into the role of S0RB in remediating As contamination and provides valuable knowledge for practical applications.


Assuntos
Arseniatos , Arsenicais , Reatores Biológicos , Reatores Biológicos/microbiologia , Enxofre , Sulfetos/química , Sulfatos/química , Oxirredução
20.
Chemosphere ; 311(Pt 2): 137055, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36367509

RESUMO

Anaerobic methane oxidation (AOM) coupled to nitrate, sulfate and iron has been most extensively studied. Recently, AOM coupled with arsenate reduction (AOM-AsR) was demonstrated in laboratory microcosm incubation, however whether AOM-AsR is active in the field conditions remains elusive. Here, we used 13C-labeled methane (13CH4) to investigate the AOM-AsR process in both anaerobic microcosms and field conditions with identical soils. Our results revealed the occurrence of AOM-AsR in the field, but AOM-AsR in the field was not as active as that which occurred in the laboratory (AOM-AsR contributed approximately 33.87% and 80.76% of total As release in the field and laboratory studies, respectively). This occurred because the laboratory setting provided a more suitable condition for the AOM-AsR process. Moreover, the results suggested that the relative abundance of mcrA from the ANME-2d was the most abundant. Our results clearly demonstrate that the AOM-AsR is active in both the laboratory and field conditions. Moreover, the results highlight the potential risk the AOM-AsR for pose for As contamination in rice paddies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA