Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Small ; 20(3): e2305539, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699754

RESUMO

Artificial enzymes, as alternatives to natural enzymes, have attracted enormous attention in the fields of catalysis, biosensing, diagnostics, and therapeutics because of their high stability and low cost. Polyoxometalates (POMs), a class of inorganic metal oxides, have recently shown great potential in mimicking enzyme activity due to their well-defined structure, tunable composition, high catalytic efficiency, and easy storage properties. This review focuses on the recent advances in POM-based artificial enzymes. Different types of POMs and their derivatives-based mimetic enzyme functions are covered, as well as the corresponding catalytic mechanisms (where available). An overview of the broad applications of representative POM-based artificial enzymes from biosensing to theragnostic is provided. Insight into the current challenges and the future directions for POMs-based artificial enzymes is discussed.


Assuntos
Ânions , Polieletrólitos , Ânions/química , Polieletrólitos/química , Enzimas
2.
Small ; 20(3): e2305369, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37679094

RESUMO

The growing demand for highly active nanozymes in various fields has led to the development of several strategies to enhance their activity. Plasmonic enhancement, a strategy used in heterogenous catalysis, represents a promising strategy to boost the activity of nanozymes. Herein, Pd-Au heteromeric nanoparticles (Pd-Au dimers) with well-defined heterointerfaces have been explored as plasmonic nanozymes. As a model system, the Pd-Au dimers with integrated peroxidase (POD)-like activity and plasmonic activity are used to investigate the effect of plasmons on enhancing the activity of nanozymes under visible light irradiation. Mechanistic studies revealed that the generation of hot electron-hole pairs plays a dominant role in plasmonic effect, and it greatly enhances the decomposition of H2 O2 to the reactive oxygen species (ROS) intermediates (•OH, •O2 - and 1 O2 ), leading to elevated POD-like activity of the Pd-Au dimers. Finally, the Pd-Au dimers are applied in the plasmon-enhanced colorimetric method for the detection of alkaline phosphatase, exhibiting broad linear range and low detection limit. This study not only provides a straightforward approach for regulating nanozyme activity through plasmonic heterostructures but also sheds light on the mechanism of plasmon-enhanced catalysis of nanozymes.


Assuntos
Colorimetria , Nanopartículas , Colorimetria/métodos , Catálise , Espécies Reativas de Oxigênio
3.
Small ; 20(37): e2401673, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38721983

RESUMO

One of the biggest challenges in biotechnology and medical diagnostics is finding extremely sensitive and adaptable biosensors. Since metal-based enzyme-mimetic biocatalysts may lead to biosafety concerns on accumulative toxicity, it is essential to synthesize metal-free enzyme-mimics with optimal biocatalytic activity and superior selectivity. Here, the pyridine-bridged covalent organic frameworks (COFs) with specific oxidase-like (OXD-like) activities as intelligent artificial enzymes for light-augmented biocatalytic sensing of biomarkers are disclosed. Because of the adjustable bandgaps of pyridine structures on the photocatalytic properties of the pristine COF structures, the pyridine-bridged COF exhibit efficient, selective, and light-responsive OXD-like biocatalytic activity. Moreover, the pyridine-bridged COF structures show tunable and light-augmented biocatalytic detection capabilities, which outperform the recently reported state-of-the-art OXD-mimics regarding biosensing efficiency. Notably, the pyridine-bridged COF exhibits efficient and multifaceted diagnostic activity, including the extremely low limit of detection (LOD), which enables visual assays for abundant reducibility biomarkers. It is believed that this design will offer unique metal-free biocatalysts for high-sensitive and low-cost colorimetric detection and also provide new insights to create highly efficient enzyme-like COF materials via linkage-modulation strategies for future biocatalytic applications.


Assuntos
Biocatálise , Técnicas Biossensoriais , Luz , Estruturas Metalorgânicas , Piridinas , Piridinas/química , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos
4.
J Pept Sci ; 30(10): e3606, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38719781

RESUMO

The mutual relationship between peptides and metal ions enables metalloproteins to have crucial roles in biological systems, including structural, sensing, electron transport, and catalytic functions. The effort to reproduce or/and enhance these roles, or even to create unprecedented functions, is the focus of protein design, the first step toward the comprehension of the complex machinery of nature. Nowadays, protein design allows the building of sophisticated scaffolds, with novel functions and exceptional stability. Recent progress in metalloprotein design has led to the building of peptides/proteins capable of orchestrating the desired functions of different metal cofactors. The structural diversity of peptides allows proper selection of first- and second-shell ligands, as well as long-range electrostatic and hydrophobic interactions, which represent precious tools for tuning metal properties. The scope of this review is to discuss the construction of metal sites in de novo designed and miniaturized scaffolds. Selected examples of mono-, di-, and multi-nuclear binding sites, from the last 20 years will be described in an effort to highlight key artificial models of catalytic or electron-transfer metalloproteins. The authors' goal is to make readers feel like guests at the marriage between peptides and metal ions while offering sources of inspiration for future architects of innovative, artificial metalloproteins.


Assuntos
Metaloproteínas , Metais , Peptídeos , Metaloproteínas/química , Metaloproteínas/metabolismo , Peptídeos/química , Metais/química , Íons/química , Sítios de Ligação , Modelos Moleculares
5.
Angew Chem Int Ed Engl ; 63(33): e202404312, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38783596

RESUMO

Consistent introduction of novel enzymes is required for developing efficient biocatalysts for challenging biotransformations. Absorbing catalytic modes from organocatalysis may be fruitful for designing new-to-nature enzymes with novel functions. Herein we report a newly designed artificial enzyme harboring a catalytic pyrrolidine residue that catalyzes the asymmetric Michael addition of cyclic ketones to nitroolefins through enamine activation with high efficiency. Diverse chiral γ-nitro cyclic ketones with two stereocenters were efficiently prepared with excellent stereoselectivity (up to 97 % e.e., >20 : 1 d.r.) and good yield (up to 86 %). This work provides an efficient biocatalytic strategy for cyclic ketone functionalization, and highlights the usefulness of artificial enzymes for extending biocatalysis to further non-natural reactions.


Assuntos
Alcenos , Biocatálise , Cetonas , Cetonas/química , Cetonas/metabolismo , Alcenos/química , Alcenos/metabolismo , Estereoisomerismo , Nitrocompostos/química , Nitrocompostos/metabolismo , Aminas/química , Aminas/metabolismo , Estrutura Molecular , Catálise
6.
Angew Chem Int Ed Engl ; 63(45): e202411347, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-38967094

RESUMO

The objective of this study was to create artificial enzymes that capitalize on pnictogen bonding, a σ-hole interaction that is essentially absent in biocatalysis. For this purpose, stibine catalysts were equipped with a biotin derivative and combined with streptavidin mutants to identify an efficient transfer hydrogenation catalyst for the reduction of a fluorogenic quinoline substrate. Increased catalytic activity from wild-type streptavidin to the best mutants coincides with the depth of the σ hole on the Sb(V) center, and the emergence of saturation kinetic behavior. Michaelis-Menten analysis reveals transition-state recognition in the low micromolar range, more than three orders of magnitude stronger than the millimolar substrate recognition. Carboxylates preferred by the best mutants contribute to transition-state recognition by hydrogen-bonded ion pairing and anion-π interactions with the emerging pyridinium product. The emergence of challenging stereoselectivity in aqueous systems further emphasizes compatibility of pnictogen bonding with higher order systems catalysis.


Assuntos
Quinolinas , Quinolinas/química , Quinolinas/metabolismo , Estreptavidina/química , Estreptavidina/metabolismo , Cinética , Biotina/química , Biotina/metabolismo , Hidrogenação , Biocatálise , Ligação de Hidrogênio , Estrutura Molecular
7.
Angew Chem Int Ed Engl ; 63(34): e202407838, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38860437

RESUMO

The inherent chiral structures of DNA serve as attractive scaffolds to construct DNA hybrid catalysts for valuable enantioselective transformations. Duplex and G-quadruplex DNA-based enantioselective catalysis has made great progress, yet novel design strategies of DNA hybrid catalysts are highly demanding and atomistic analysis of active centers is still challenging. DNA i-motif structures could be finely tuned by different cytosine-cytosine base pairs, providing a new platform to design DNA catalysts. Herein, we found that a human telomeric i-motif DNA containing cytosine-silver(I)-cytosine (C-Ag+-C) base pairs interacting with Cu(II) ions (i-motif DNA(Ag+)/Cu2+) could catalyze Diels-Alder reactions with full conversions and up to 95 % enantiomeric excess. As characterized by various physicochemical techniques, the presence of Ag+ is proved to replace the protons in hemiprotonated cytosine-cytosine (C : C+) base pairs and stabilize the DNA i-motif to allow the acceptance of Cu(II) ions. The i-motif DNA(Ag+)/Cu2+ catalyst shows about 8-fold rate acceleration compared with DNA and Cu2+. Based on DNA mutation experiments, thermodynamic studies and density function theory calculations, the catalytic center of Cu(II) ion is proposed to be located in a specific loop region via binding to one nitrogen-7 atom of an unpaired adenine and two phosphate-oxygen atoms from nearby deoxythymidine monophosphate and deoxyadenosine monophosphate, respectively.


Assuntos
Cobre , Reação de Cicloadição , DNA , Prata , Prata/química , Catálise , DNA/química , Estereoisomerismo , Cobre/química , Citosina/química , Humanos , Pareamento de Bases
8.
Angew Chem Int Ed Engl ; 63(15): e202400838, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38372011

RESUMO

Developing artificial enzymes based on organic molecules or polymers for reactive oxygen species (ROS)-related catalysis has broad applicability. Herein, inspired by porphyrin-based heme mimics, we report the synthesis of polyphthalocyanine-based conjugated polymers (Fe-PPc-AE) as a new porphyrin-evolving structure to serve as efficient and versatile artificial enzymes for augmented reactive oxygen catalysis. Owing to the structural advantages, such as enhanced π-conjugation networks and π-electron delocalization, promoted electron transfer, and unique Fe-N coordination centers, Fe-PPc-AE showed more efficient ROS-production activity in terms of Vmax and turnover numbers as compared with porphyrin-based conjugated polymers (Fe-PPor-AE), which also surpassed reported state-of-the-art artificial enzymes in their activity. More interestingly, by changing the reaction medium and substrates, Fe-PPc-AE also revealed significantly improved activity and environmental adaptivity in many other ROS-related biocatalytic processes, validating the potential of Fe-PPc-AE to replace conventional (poly)porphyrin-based heme mimics for ROS-related catalysis, biosensors, or biotherapeutics. It is suggested that this study will offer essential guidance for designing artificial enzymes based on organic molecules or polymers.


Assuntos
Heme , Porfirinas , Heme/química , Oxigênio/química , Espécies Reativas de Oxigênio , Porfirinas/química , Catálise , Polímeros
9.
Chembiochem ; 24(6): e202200566, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36418221

RESUMO

The design of artificial enzymes has emerged as a promising tool for the generation of potent biocatalysts able to promote new-to-nature reactions with improved catalytic performances, providing a powerful platform for wide-ranging applications and a better understanding of protein functions and structures. The selection of an appropriate protein scaffold plays a key role in the design process. This review aims to give a general overview of the most common protein scaffolds that can be exploited for the generation of artificial enzymes. Several examples are discussed and categorized according to the strategy used for the design of the artificial biocatalyst, namely the functionalization of natural enzymes, the creation of a new catalytic site in a protein scaffold bearing a wide hydrophobic pocket and de novo protein design. The review is concluded by a comparison of these different methods and by our perspective on the topic.


Assuntos
Metaloproteínas , Metaloproteínas/química , Engenharia de Proteínas/métodos , Domínio Catalítico , Catálise , Enzimas/metabolismo
10.
Mikrochim Acta ; 190(10): 425, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776360

RESUMO

The ability of shape-controlled octahedral Pt nanoparticles to act as nanozyme mimicking glucose oxidase enzyme is reported. Extended {111} particle surface facets coupled with a size comparable to natural enzymes and easy-to-remove citrate coating give high affinity for glucose, comparable to the enzyme as proven by the steady-state kinetics of glucose electrooxidation. The easy and thorough removal of the citrate coating, demonstrated by X-ray photoelectron spectroscopy analysis, allows a highly stable deposition of the nanozymes on the electrode. The glucose electrochemical detection (at -0.2 V vs SCE) shows a linear response between 0.36 and 17 mM with a limit of detection of 110 µM. A good reproducibility has been achieved, with an average relative standard deviation (RSD) value of 9.1% (n = 3). Similarly, a low intra-sensor variability has been observed, with a RSD of 6.6% (n = 3). Moreover, the sensor shows a long-term stability with reproducible performances for at least 2 months (RSD: 7.8%). Tests in saliva samples show the applicability of Pt nanozymes to commercial systems for non-invasive monitoring of hyperglycemia in saliva, with recoveries ranging from 92 to 98%.


Assuntos
Glucose Oxidase , Nanopartículas , Glucose Oxidase/química , Platina/química , Reprodutibilidade dos Testes , Nanopartículas/química , Glucose/análise
11.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239950

RESUMO

The extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances. Attempts to use these sophisticated enzymes in scalable hydrogen production have been hampered by limitations associated with their production and stability. Inspired by nature, significant efforts have been made in the development of artificial systems able to promote the hydrogen evolution reaction, via either electrochemical or light-driven catalysis. Starting from small-molecule coordination compounds, peptide- and protein-based architectures have been constructed around the catalytic center with the aim of reproducing hydrogenase function into robust, efficient, and cost-effective catalysts. In this review, we first provide an overview of the structural and functional properties of hydrogenases, along with their integration in devices for hydrogen and energy production. Then, we describe the most recent advances in the development of homogeneous hydrogen evolution catalysts envisioned to mimic hydrogenases.


Assuntos
Hidrogenase , Prótons , Hidrogênio/química , Oxirredução , Hidrogenase/química , Fotossíntese , Catálise
12.
Angew Chem Int Ed Engl ; 62(1): e202214191, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36342952

RESUMO

Artificial enzymes utilizing the genetically encoded non-proteinogenic amino acid p-aminophenylalanine (pAF) as a catalytic residue are able to react with carbonyl compounds through an iminium ion mechanism to promote reactions that have no equivalent in nature. Herein, we report an in vivo biocatalytic cascade that is augmented with such an artificial enzyme-catalysed new-to-nature reaction. The artificial enzyme in this study is a pAF-containing evolved variant of the lactococcal multidrug-resistance regulator, designated LmrR_V15pAF_RMH, which efficiently converts benzaldehyde derivatives produced in vivo into the corresponding hydrazone products inside E. coli cells. These in vivo biocatalytic cascades comprising an artificial-enzyme-catalysed reaction are an important step towards achieving a hybrid metabolism.


Assuntos
Escherichia coli , Compostos Orgânicos , Escherichia coli/metabolismo , Biocatálise , Catálise , Compostos Orgânicos/metabolismo , Resistência a Múltiplos Medicamentos
13.
Small ; 18(10): e2105304, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032093

RESUMO

The assembly of molecules into hierarchical superstructures is ubiquitous in the construction of novel geometrically complex hierarchical superstructures, attracting great attention. Herein, a metal-ligand cross-linking strategy is developed for the fabrication of ferric ion-dopamine coordination hierarchical superstructures. A range of superstructures with highly complex morphologies, such as flower-like, octopus-like, and hedgehog-like superstructures, are synthesized. The mechanism for formation of hierarchical superstructures involves the pre-cross-linking of ferric ion with dopamine molecules, the fabrication of iron-dopamine precursors aggregated into the spherical aggregates, the nanoscale aggregates sintering and ordering themselves upon equilibration, the nanodots polymerizing into nanorods, and finally the nanorods self-assembling into hierarchical superstructures. In-depth research illustrates that as the permittivity (ξ) of the reaction system increases, the resulting hierarchical superstructures tend to converge into spherical shape. As a proof of concept, the 0D nanospheres, 1D nanorods, and 3D hierarchical superstructures are fabricated through adjusting system permittivity. The hierarchical superstructure is utilized as peroxidase-like ligase mimics to enhance the effect of tumor photothermal treatment. Further in vitro and in vivo assays demonstrate that the hierarchical superstructure can effectively ablate tumor cells. This work opens new horizons in hierarchical superstructures with complex architectures, and has great potential in nanozymology, biomedical science, and catalysis.


Assuntos
Nanotubos , Neoplasias , Proteínas Hedgehog , Humanos , Ligases , Nanotubos/química , Neoplasias/terapia , Terapia Fototérmica
14.
Chembiochem ; 23(19): e202200384, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35925843

RESUMO

Nitrogenase employs a sophisticated electron transfer system and a Mo-Fe-S-C cofactor, designated the M-cluster [(cit)MoFe7 S9 C]), to reduce atmospheric N2 to bioaccessible NH3 . Previously, we have shown that the cofactor-free form of nitrogenase can be repurposed as a protein scaffold for the incorporation of a synthetic Fe-S cluster [Fe6 S9 (SEt)2 ]4- . Here, we demonstrate the utility of an asymmetric Mo-Fe-S cluster [Cp*MoFe5 S9 (SH)]3- as an alternative artificial cofactor upon incorporation into the cofactor-free nitrogenase scaffold. The resultant semi-artificial enzyme catalytically reduces C2 H2 to C2 H4 , and CN- into short-chain hydrocarbons, yet it is clearly distinct in activity from its [Fe6 S9 (SEt)2 ]4- -reconstituted counterpart, pointing to the possibility to employ molecular design and cluster synthesis strategies to further develop semi-artificial or artificial systems with desired catalytic activities.


Assuntos
Hidrocarbonetos , Nitrogenase , Hidrocarbonetos/metabolismo , Nitrogenase/metabolismo , Oxirredução
15.
Angew Chem Int Ed Engl ; 61(14): e202116457, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35064623

RESUMO

Inside living cells, regulation of catalytic activity of artificial enzymes remains challenging due to issues such as biocompatibility, efficiency, and stability of the catalyst, by which the practical applications of artificial enzymes have been severely hindered. Here, an artificial enzyme, PTT-SGH, with responsiveness to reactive oxygen species (ROS), was obtained by introducing a catalytic histidine residue to pentaerythritol tetra(3-mercaptopropionate) (PTT). The artificial enzyme formed large aggregates in cells via the intracellular ROS-mediated oxidation of thiol groups. The process was significantly facilitated in tumor cells because of the higher ROS concentration in the tumor microenvironment. The catalytic activity of this artificial enzyme was intensively enhanced through deprotonation of cross-linked PTT-SGH, which showed typical esterase activities. Selective fluorescence imaging of tumor cells was achieved using the artificial enzyme to trigger the cleavage of the ester bond of the caged fluorophore inside living cells.


Assuntos
Neoplasias , Imagem Óptica , Catálise , Neoplasias/diagnóstico por imagem , Espécies Reativas de Oxigênio , Compostos de Sulfidrila , Microambiente Tumoral
16.
Chembiochem ; 22(3): 443-459, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32852088

RESUMO

The Diels-Alder (DA) reaction is a cycloaddition of a conjugated diene and an alkene (dienophile) leading to the formation of a cyclohexene derivative through a concerted mechanism. As DA reactions generally proceed with a high degree of regio- and stereoselectivity, they are widely used in synthetic organic chemistry. Considering eco-conscious public and governmental movements, efforts are now directed towards the development of synthetic processes that meet environmental concerns. Artificial enzymes, which can be developed to catalyze abiotic reactions, appear to be important synthetic tools in the synthetic biology field. This review describes the different strategies used to develop protein-based artificial enzymes for DA reactions, including for in cellulo approaches.


Assuntos
Cicloexenos/síntese química , Albumina Sérica/química , Animais , Reação de Cicloadição , Cicloexenos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Suínos
17.
Small ; 16(27): e2000392, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32372559

RESUMO

Cellular life is orchestrated by the biochemical components of cells that include nucleic acids, lipids, carbohydrates, proteins, and cofactors such as metabolites and metals, all of which coalesce and function synchronously within the cell. Metalloenzymes allow for such complex chemical processes, as they catalyze a myriad of biochemical reactions both efficiently and selectively, where the metal cofactor provides additional functionality to promote reactivity not readily achieved in their absence. While the past 60 years have yielded considerable insight on how enzymes catalyze these reactions, a need to engineer and develop artificial metalloenzymes has been driven not only by industrial and therapeutic needs, but also by innate human curiosity. The design of miniature enzymes, both rationally and through serendipity, using both organic and inorganic building blocks has been explored by many scientists over the years and significant progress has been made. Herein, recent developments over the past 5 years in areas that have not been recently reviewed are summarized, and prospects for future research in these areas are addressed.


Assuntos
Biomimética , Enzimas , Metaloproteínas , Biomimética/normas , Biomimética/tendências , Catálise , Enzimas/síntese química , Humanos , Metaloproteínas/química , Compostos Orgânicos , Biologia Sintética/tendências
18.
Chembiochem ; 21(16): 2241-2249, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32294286

RESUMO

Enzyme engineering has made impressive progress in the past decades, paving the way for the widespread use of enzymes for various purposes. In contrast to "classical" enzyme engineering, which focuses on optimizing specific properties of natural enzymes, a more recent trend towards the creation of artificial enzymes that catalyze fundamentally distinct, new-to-nature reactions is observable. While approaches for creating such enzymes differ significantly, they share the common goal of enabling biocatalytic novelty to broaden the range of applications for enzymes. Although most artificial enzymes reported to date are only moderately active and barely function in vivo, they have the potential to endow cells with capabilities that were previously out of reach and thus herald a new wave of "functional xenobiology". Herein, we highlight recent developments in the field of artificial enzymes with a particular focus on challenges and opportunities for their use in xenobiology.


Assuntos
Materiais Biomiméticos/química , Enzimas/metabolismo , Xenobióticos/química , Biocatálise , Desenho de Fármacos
19.
Chembiochem ; 21(21): 3146-3150, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32529779

RESUMO

A pair of 9-mesityl-10-phenyl acridinium (Mes-Acr+ ) photoredox catalysts were synthesized with an iodoacetamide handle for cysteine bioconjugation. Covalently tethering of the synthetic Mes-Acr+ cofactors with a small panel of thermostable protein scaffolds resulted in 12 new artificial enzymes. The unique chemical and structural environment of the protein hosts had a measurable effect on the photophysical properties and photocatalytic activity of the cofactors. The constructed Mes-Acr+ hybrid enzymes were found to be active photoinduced electron-transfer catalysts, controllably oxidizing a variety of aryl sulfides when irradiated with visible light, and possessed activities that correlated with the photophysical characterization data. Their catalytic performance was found to depend on multiple factors including the Mes-Acr+ cofactor, the protein scaffold, the location of cofactor immobilization, and the substrate. This work provides a framework toward adapting synthetic photoredox catalysts into artificial cofactors and includes important considerations for future bioengineering efforts.


Assuntos
Acridinas/síntese química , Acridinas/metabolismo , Cisteína/metabolismo , Desenho de Fármacos , Iodoacetamida/metabolismo , Oxigenases/metabolismo , Acridinas/química , Catálise , Cisteína/química , Transporte de Elétrons , Iodoacetamida/química , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxigenases/química , Processos Fotoquímicos
20.
Angew Chem Int Ed Engl ; 59(26): 10645-10650, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32198805

RESUMO

N6 -isopentenyladenosine (i6 A) is an RNA modification found in cytokinins, which regulate plant growth/differentiation, and a subset of tRNAs, where it improves the efficiency and accuracy of translation. The installation and removal of this modification is mediated by prenyltransferases and cytokinin oxidases, and a chemical approach to selective deprenylation of i6 A has not been developed. We show that a selected group of oxoammonium cations function as artificial deprenylases to promote highly selective deprenylation of i6 A in nucleosides, oligonucleotides, and live cells. Importantly, other epigenetic modifications, amino acid residues, and natural products were not affected. Moreover, a significant phenotype difference in the Arabidopsis thaliana shoot and root development was observed with incubation of the cation. These results establish these small organic molecules as direct chemical regulators/artificial deprenylases of i6 A.


Assuntos
Óxidos N-Cíclicos/farmacologia , Citocininas/metabolismo , Isopenteniladenosina/metabolismo , Piperidinas/farmacologia , Prenilação/efeitos dos fármacos , RNA/metabolismo , Arabidopsis/efeitos dos fármacos , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/toxicidade , Citocininas/química , Epigênese Genética/efeitos dos fármacos , Humanos , Isopenteniladenosina/química , Células MCF-7 , Oligorribonucleotídeos/química , Oligorribonucleotídeos/metabolismo , Piperidinas/química , Piperidinas/toxicidade , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA