Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Rev Cardiovasc Med ; 24(11): 330, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39076440

RESUMO

Background: Cardiovascular diseases (CVD) remain the predominant global cause of mortality, with both low and high temperatures increasing CVD-related mortalities. Climate change impacts human health directly through temperature fluctuations and indirectly via factors like disease vectors. Elevated and reduced temperatures have been linked to increases in CVD-related hospitalizations and mortality, with various studies worldwide confirming the significant health implications of temperature variations and air pollution on cardiovascular outcomes. Methods: A database of daily Emergency Room admissions at the Giovanni XIII Polyclinic in Bari (Southern Italy) was developed, spanning from 2013 to 2019, including weather and air quality data. A Random Forest (RF) supervised machine learning model was used to simulate the trend of hospital admissions for CVD. The Seasonal and Trend decomposition using Loess (STL) decomposition model separated the trend component, while cross-validation techniques were employed to prevent overfitting. Model performance was assessed using specific metrics and error analysis. Additionally, the SHapley Additive exPlanations (SHAP) method, a feature importance technique within the eXplainable Artificial Intelligence (XAI) framework, was used to identify the feature importance. Results: An R 2 of 0.97 and a Mean Absolute Error of 0.36 admissions were achieved by the model. Atmospheric pressure, minimum temperature, and carbon monoxide were found to collectively contribute about 74% to the model's predictive power, with atmospheric pressure being the dominant factor at 37%. Conclusions: This research underscores the significant influence of weather-climate variables on cardiovascular diseases. The identified key climate factors provide a practical framework for policymakers and healthcare professionals to mitigate the adverse effects of climate change on CVD and devise preventive strategies.

2.
Sensors (Basel) ; 22(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35746228

RESUMO

The old fibers that make up heritage textiles displayed in museums are degraded by the aging process, environmental conditions (microclimates, particulate matter, pollutants, sunlight) and the action of microorganisms. In order to counteract these processes and keep the textile exhibits in good condition for as long as possible, both reactive and preventive interventions on them are necessary. Based on these ideas, the present study aims to test a natural and non-invasive method of cleaning historic textiles, which includes the use of a natural substance with a known antifungal effect (being traditionally used in various rural communities)-lye. The design of the study was aimed at examining a traditional women's shirt that is aged between 80-100 years, using artificial intelligence techniques for Scanning Electron Microscopy (SEM) imagery analysis and X-ray powder diffraction technique in order to achieve a complex and accurate investigation and monitoring of the object's realities. The determinations were performed both before and after washing the material with lye. SEM microscopy investigations of the ecologically washed textile specimens showed that the number of microorganism colonies, as well as the amount of dust, decreased. It was also observed that the surface cellulose fibers lost their integrity, eventually being loosened on cellulose fibers of cotton threads. This could better visualize the presence of microfibrils that connect the cellulose fibers in cotton textiles. The results obtained could be of real value both for the restorers, the textile collections of the different museums, and for the researchers in the field of cultural heritage. By applying such a methodology, cotton tests can be effectively cleaned without compromising the integrity of the material.


Assuntos
Pesquisa Interdisciplinar , Lixívia , Idoso de 80 Anos ou mais , Inteligência Artificial , Celulose , Feminino , Humanos , Têxteis
3.
J Environ Manage ; 249: 109368, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421480

RESUMO

The Brazilian Savannah, known as Cerrado, has the richest flora in the world among the savannas, with a high degree of endemic species. Despite the global ecological importance of the Cerrado, there are few studies focused on the modeling of the volume and biomass of this forest formation. Volume and biomass estimation can be performed using allometric models, artificial intelligence (AI) techniques and mixed regression models. Thus, the aim of this work was to evaluate the use of AI techniques and mixed models to estimate the volume and biomass of individual trees in vegetation of Brazilian central savanna. Numerical variables (diameter at height of 1.30 m of ground, total height, volume and biomass) and categorical variables (species) were used for the training and fitting of AI techniques and mixed models, respectively. The statistical indicators used to evaluate the training and the adjustment were the correlation coefficient, bias and Root mean square error relative. In addition, graphs were elaborated as complementary analysis. The results obtained by the statistical indicators and the graphical analysis show the great potential of AI techniques and mixed models in the estimation of volume and biomass of individual trees in Brazilian savanna vegetation. In addition, the proposed methodologies can be adapted to other biomes, forest typologies and variables of interest.


Assuntos
Pradaria , Árvores , Biomassa , Brasil , Ecossistema
4.
Sensors (Basel) ; 17(6)2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28598400

RESUMO

This work presents a soft-sensor approach for estimating critical mechanical properties of sandcrete materials. Feed-forward (FF) artificial neural network (ANN) models are employed for building soft-sensors able to predict the 28-day compressive strength and the modulus of elasticity of sandcrete materials. To this end, a new normalization technique for the pre-processing of data is proposed. The comparison of the derived results with the available experimental data demonstrates the capability of FF ANNs to predict with pinpoint accuracy the mechanical properties of sandcrete materials. Furthermore, the proposed normalization technique has been proven effective and robust compared to other normalization techniques available in the literature.

5.
EJNMMI Phys ; 11(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165551

RESUMO

OBJECTIVES: This study aims to decrease the scan time and enhance image quality in pediatric total-body PET imaging by utilizing multimodal artificial intelligence techniques. METHODS: A total of 270 pediatric patients who underwent total-body PET/CT scans with a uEXPLORER at the Sun Yat-sen University Cancer Center were retrospectively enrolled. 18F-fluorodeoxyglucose (18F-FDG) was administered at a dose of 3.7 MBq/kg with an acquisition time of 600 s. Short-term scan PET images (acquired within 6, 15, 30, 60 and 150 s) were obtained by truncating the list-mode data. A three-dimensional (3D) neural network was developed with a residual network as the basic structure, fusing low-dose CT images as prior information, which were fed to the network at different scales. The short-term PET images and low-dose CT images were processed by the multimodal 3D network to generate full-length, high-dose PET images. The nonlocal means method and the same 3D network without the fused CT information were used as reference methods. The performance of the network model was evaluated by quantitative and qualitative analyses. RESULTS: Multimodal artificial intelligence techniques can significantly improve PET image quality. When fused with prior CT information, the anatomical information of the images was enhanced, and 60 s of scan data produced images of quality comparable to that of the full-time data. CONCLUSION: Multimodal artificial intelligence techniques can effectively improve the quality of pediatric total-body PET/CT images acquired using ultrashort scan times. This has the potential to decrease the use of sedation, enhance guardian confidence, and reduce the probability of motion artifacts.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124296, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640628

RESUMO

As artificial intelligence technology gains widespread adoption in biomedicine, the exploration of integrating biofluidic Raman spectroscopy for enhanced disease diagnosis opens up new prospects for the practical application of Raman spectroscopy in clinical settings. However, for systemic lupus erythematosus (SLE), origin Raman spectral data (ORS) have relatively weak signals, making it challenging to obtain ideal classification results. Although the surface enhancement technique can enhance the scattering signal of Raman spectroscopic data, the sensitivity of the SERS substrate to airborne impurities and the inhomogeneous distribution of hotspots degrade part of the signal. To fully utilize both kinds of data, this paper proposes a two-branch residual-attention network (DBRAN) fusion technique, which allows the ORS to complement the degraded portion and thus improve the model's classification accuracy. The features are extracted using the residual module, which retains the original features while extracting the deep features. At the same time, the study incorporates the attention module in both the upper and lower branches to handle the weight allocation of the two modal features more efficiently. The experimental results demonstrate that both the low-level fusion method and the intermediate-level fusion method can significantly improve the diagnostic accuracy of SLE disease classification compared with a single modality, in which the intermediate-level fusion of DBRAN achieves 100% classification accuracy, sensitivity, and specificity. The accuracy is improved by 10% and 7% compared with the ORS unimodal and the SERS unimodal modalities, respectively. The experiment, by fusing the multimodal spectral, realized rapid diagnosis of SLE disease by fusing multimodal spectral data, which provides a reference idea in the field of Raman spectroscopy and can be further promoted to clinical practical applications in the future.


Assuntos
Lúpus Eritematoso Sistêmico , Análise Espectral Raman , Lúpus Eritematoso Sistêmico/diagnóstico , Especificidade por Substrato , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos , Imagem Multimodal/instrumentação , Imagem Multimodal/métodos , Análise de Componente Principal , Processamento de Sinais Assistido por Computador
7.
Sci Rep ; 14(1): 15361, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965388

RESUMO

T-cell receptor (TCR) detection can examine the extent of T-cell immune responses. Therefore, the article analyzed characteristic data of glioma obtained by DNA-based TCR high-throughput sequencing, to predict the disease with fewer biomarkers and higher accuracy. We downloaded data online and obtained six TCR-related diversity indices to establish a multidimensional classification system. By comparing actual presence of the 602 correlated sequences, we obtained two-dimensional and multidimensional datasets. Multiple classification methods were utilized for both datasets with the classification accuracy of multidimensional data slightly less to two-dimensional datasets. This study reduced the TCR ß sequences through feature selection methods like RFECV (Recursive Feature Elimination with Cross-Validation). Consequently, using only the presence of these three sequences, the classification AUC value of 96.67% can be achieved. The combination of the three correlated TCR clones obtained at a source data threshold of 0.1 is: CASSLGGNTEAFF_TRBV12_TRBJ1-1, CASSYSDTGELFF_TRBV6_TRBJ2-2, and CASSLTGNTEAFF_TRBV12_TRBJ1-1. At 0.001, the combination is: CASSLGETQYF_TRBV12_TRBJ2-5, CASSLGGNQPQHF_TRBV12_TRBJ1-5, and CASSLSGNTIYF_TRBV12_TRBJ1-3. This method can serve as a potential diagnostic and therapeutic tool, facilitating diagnosis and treatment of glioma and other cancers.


Assuntos
Algoritmos , Glioma , Sequenciamento de Nucleotídeos em Larga Escala , Receptores de Antígenos de Linfócitos T , Glioma/genética , Glioma/diagnóstico , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Receptores de Antígenos de Linfócitos T/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico
8.
Diagnostics (Basel) ; 13(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238304

RESUMO

One of the most prevalent chronic conditions that can result in permanent vision loss is diabetic retinopathy (DR). Diabetic retinopathy occurs in five stages: no DR, and mild, moderate, severe, and proliferative DR. The early detection of DR is essential for preventing vision loss in diabetic patients. In this paper, we propose a method for the detection and classification of DR stages to determine whether patients are in any of the non-proliferative stages or in the proliferative stage. The hybrid approach based on image preprocessing and ensemble features is the foundation of the proposed classification method. We created a convolutional neural network (CNN) model from scratch for this study. Combining Local Binary Patterns (LBP) and deep learning features resulted in the creation of the ensemble features vector, which was then optimized using the Binary Dragonfly Algorithm (BDA) and the Sine Cosine Algorithm (SCA). Moreover, this optimized feature vector was fed to the machine learning classifiers. The SVM classifier achieved the highest classification accuracy of 98.85% on a publicly available dataset, i.e., Kaggle EyePACS. Rigorous testing and comparisons with state-of-the-art approaches in the literature indicate the effectiveness of the proposed methodology.

9.
Cureus ; 14(9): e29162, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36258971

RESUMO

An adverse event is any abnormal clinical finding associated with the use of a therapy. Adverse events are classified by reporting an event's seriousness, expectedness, and relatedness. Monitoring patient safety is of utmost importance as more and more data becomes available. In reality, very low numbers of adverse events are reported via the official path. Chart review, voluntary reporting, computerized surveillance, and direct observation can detect adverse drug events. Medication errors are commonly seen in hospitals and need provider and system-based interventions to prevent them. The need of the hour in India is to develop and implement medication safety best practices to avoid adverse events. The utility of artificial intelligence techniques in adverse event detection remains unexplored, and their accuracy and precision need to be studied in a controlled setting. There is a need to develop predictive models to assess the likelihood of adverse reactions while testing novel pharmaceutical drugs.

10.
IEEE Access ; 9: 65750-65757, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35256922

RESUMO

The Covid-19 pandemic represents one of the greatest global health emergencies of the last few decades with indelible consequences for all societies throughout the world. The cost in terms of human lives lost is devastating on account of the high contagiousness and mortality rate of the virus. Millions of people have been infected, frequently requiring continuous assistance and monitoring. Smart healthcare technologies and Artificial Intelligence algorithms constitute promising solutions useful not only for the monitoring of patient care but also in order to support the early diagnosis, prevention and evaluation of Covid-19 in a faster and more accurate way. On the other hand, the necessity to realise reliable and precise smart healthcare solutions, able to acquire and process voice signals by means of appropriate Internet of Things devices in real-time, requires the identification of algorithms able to discriminate accurately between pathological and healthy subjects. In this paper, we explore and compare the performance of the main machine learning techniques in terms of their ability to correctly detect Covid-19 disorders through voice analysis. Several studies report, in fact, significant effects of this virus on voice production due to the considerable impairment of the respiratory apparatus. Vocal folds oscillations that are more asynchronous, asymmetrical and restricted are observed during phonation in Covid-19 patients. Voice sounds selected by the Coswara database, an available crowd-sourced database, have been e analysed and processed to evaluate the capacity of the main ML techniques to distinguish between healthy and pathological voices. All the analyses have been evaluated in terms of accuracy, sensitivity, specificity, F1-score and Receiver Operating Characteristic area. These show the reliability of the Support Vector Machine algorithm to detect the Covid-19 infections, achieving an accuracy equal to about 97%.

11.
Environ Sci Pollut Res Int ; 28(43): 60842-60856, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34165757

RESUMO

Predictions of pore pressure and seepage discharge are the most important parameters in the design of earth dams and assessing their safety during the operational period as well. In this research, soft computing models namely multi-layer perceptron neural network (MLPNN), support vector machine (SVM), multivariate adaptive regression splines (MARS), genetic programming (GP), M5 algorithm, and group method of data handling (GMDH) were used to predict the piezometric head in the core and the seepage discharge through the body of earth dam. For this purpose, the data recorded by the absolute instrument during the last 94 months of Shahid Kazemi Bukan Dam were used. The results showed that all of the applied models had a permissible level of accuracy in the prediction of the piezometric heads. The average error indices for the models in the training phase were R2= 0.957 and RMSE= 0.806 and in the testing phase were equal to R2= 0.949 and RMSE= 0.932, respectively. The performances of all models except the M5 and MARS in predicting seepage discharge are nearly identical; however, the best is the MARS, and the weakest is the M5 algorithm.


Assuntos
Redes Neurais de Computação , Máquina de Vetores de Suporte , Algoritmos , Simulação por Computador
12.
Sci Total Environ ; 785: 147319, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957597

RESUMO

In the 21st century, groundwater depletion is posing a serious threat to humanity throughout the world, particularly in developing nations. India being the largest consumer of groundwater in the world, dwindling groundwater storage has emerged as a serious concern in recent years. Consequently, the judicious and efficient management of vital groundwater resources is one of the grand challenges in India. Groundwater modeling is a promising tool to develop sustainable management strategies for the efficient utilization of this treasured resource. This study demonstrates a pragmatic framework for predicting seasonal groundwater levels at a large scale using real-world data. Three relatively powerful Machine Learning (ML) techniques viz., ANFIS (Adaptive Neuro-Fuzzy Inference System), Deep Neural Network (DNN) and Support Vector Machine (SVM) were employed for predicting seasonal groundwater levels at the country scale using in situ groundwater-level and pertinent meteorological data of 1996-2016. ANFIS, DNN and SVM models were developed for 18 Agro-Ecological Zones (AEZs) of India and their efficacy was evaluated using suitable statistical and graphical indicators. The findings of this study revealed that the DNN model is the most proficient in predicting seasonal groundwater levels in most AEZs, followed by the ANFIS model. However, the prediction ability of the three models is 'moderate' to 'very poor' in 3 AEZs ['Western Plain and Kutch Peninsula' in Western India, and 'Deccan Plateau (Arid)' and 'Eastern Ghats and Deccan Plateau' in Southern India]. It is recommended that groundwater-monitoring network and data acquisition systems be strengthened in India in order to ensure efficient use of modeling techniques for the sustainable management of groundwater resources.

13.
Curr Top Med Chem ; 21(4): 329-346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33183204

RESUMO

Ovarian cancer is one of the leading gynecologic diseases with a high mortality rate worldwide. Current statistical studies on cancer reveal that over the past two decades, the fifth most common cause of death related to cancer in females of the western world is ovarian cancer. In spite of significant strides made in genomics, proteomics and radiomics, there has been little progress in transitioning these research advances into effective clinical administration of ovarian cancer. Consequently, researchers have diverted their attention to finding various molecular processes involved in the development of this cancer and how these processes can be exploited to develop potential chemotherapeutics to treat this cancer. The present review gives an overview of these studies which may update the researchers on where we stand and where to go further. The unfortunate situation with ovarian cancer that still exists is that most patients with it do not show any symptoms until the disease has moved to an advanced stage. Undoubtedly, several targets-based drugs have been developed to treat it, but drug-resistance and the recurrence of this disease are still a problem. For the development of potential chemotherapeutics for ovarian cancer, however, some theoretical approaches have also been applied. A description of such methods and their success in this direction is also covered in this review.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Antineoplásicos/farmacologia , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos
14.
Artigo em Inglês | MEDLINE | ID: mdl-30555254

RESUMO

Breast cancer is the most common cancer among women around the world. Despite enormous medical progress, breast cancer has still remained the second leading cause of death worldwide; thus, its early diagnosis has a significant impact on reducing mortality. However, it is often difficult to diagnose breast abnormalities. Different tools such as mammography, ultrasound, and thermography have been developed to screen breast cancer. In this way, the computer helps radiologists identify chest abnormalities more efficiently using image processing and artificial intelligence (AI) tools. This article examined various methods of AI using image processing to diagnose breast cancer. It was a review study through library and Internet searches. By searching the databases such as Medical Literature Analysis and Retrieval System Online (MEDLINE) via PubMed, Springer, IEEE, ScienceDirect, and Gray Literature (including Google Scholar, articles published in conferences, government technical reports, and other materials not controlled by scientific publishers) and searching for breast cancer keywords, AI and medical image processing techniques were extracted. The results were provided in tables to demonstrate different techniques and their results over recent years. In this study, 18,651 articles were extracted from 2007 to 2017. Among them, those that used similar techniques and reported similar results were excluded and 40 articles were finally examined. Since each of the articles used image processing, a list of features related to the image used in each article was also provided. The results showed that support vector machines had the highest accuracy percentage for different types of images (ultrasound =95.85%, mammography =93.069%, thermography =100%). Computerized diagnosis of breast cancer has greatly contributed to the development of medicine, is constantly being used by radiologists, and is clear in ethical and medical fields with regard to its effects. Computer-assisted methods increase diagnosis accuracy by reducing false positives.

15.
J Med Phys ; 35(1): 3-14, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20177565

RESUMO

Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT) and Magnetic resonance (MR) imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA