Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 675
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(18): 1605-1617, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888340

RESUMO

The MRE11/RAD50/NBS1 (MRN) complex plays critical roles in cellular responses to DNA double-strand breaks. MRN is involved in end binding and processing, and it also induces cell cycle checkpoints by activating the ataxia-telangiectasia mutated (ATM) protein kinase. Hypomorphic pathogenic variants in the MRE11, RAD50, or NBS1 genes cause autosomal recessive genome instability syndromes featuring variable degrees of dwarfism, neurological defects, anemia, and cancer predisposition. Disease-associated MRN alleles include missense and nonsense variants, and many cause reduced protein levels of the entire MRN complex. However, the dramatic variability in the disease manifestation of MRN pathogenic variants is not understood. We sought to determine if low protein levels are a significant contributor to disease sequelae and therefore generated a transgenic murine model expressing MRE11 at low levels. These mice display dramatic phenotypes including small body size, severe anemia, and impaired DNA repair. We demonstrate that, distinct from ataxia telangiectasia-like disorder caused by MRE11 pathogenic missense or nonsense variants, mice and cultured cells expressing low MRE11 levels do not display the anticipated defects in ATM activation. Our findings indicate that ATM signaling can be supported by very low levels of the MRN complex and imply that defective ATM activation results from perturbation of MRN function caused by specific hypomorphic disease mutations. These distinct phenotypic outcomes underline the importance of understanding the impact of specific pathogenic MRE11 variants, which may help direct appropriate early surveillance for patients with these complicated disorders in a clinical setting.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Ataxia Telangiectasia , Reparo do DNA , Proteínas de Ligação a DNA , Proteína Homóloga a MRE11 , Camundongos Transgênicos , Fenótipo , Animais , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Camundongos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Reparo do DNA/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animais de Doenças , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Quebras de DNA de Cadeia Dupla
2.
Am J Hum Genet ; 110(11): 1976-1982, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37802069

RESUMO

Certain classes of genetic variation still escape detection in clinical sequencing analysis. One such class is retroelement insertion, which has been reported as a cause of Mendelian diseases and may offer unique therapeutic implications. Here, we conducted retroelement profiling on whole-genome sequencing data from a cohort of 237 individuals with ataxia telangiectasia (A-T). We found 15 individuals carrying retroelement insertions in ATM, all but one of which integrated in noncoding regions. Systematic functional characterization via RNA sequencing, RT-PCR, and/or minigene splicing assays showed that 12 out of 14 intronic insertions led or contributed to ATM loss of function by exon skipping or activating cryptic splice sites. We also present proof-of-concept antisense oligonucleotides that suppress cryptic exonization caused by a deep intronic retroelement insertion. These results provide an initial systematic estimate of the contribution of retroelements to the genetic architecture of recessive Mendelian disorders as ∼2.1%-5.5%. Our study highlights the importance of retroelement insertions as causal variants and therapeutic targets in genetic diseases.


Assuntos
Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/genética , Retroelementos/genética , Mutação , Splicing de RNA/genética , Sítios de Splice de RNA , Íntrons
3.
Mol Cell ; 71(6): 897-910.e8, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30122534

RESUMO

Chromatin ubiquitination by the ubiquitin ligase RNF168 is critical to regulate the DNA damage response (DDR). DDR deficiencies lead to cancer-prone syndromes, but whether this reflects DNA repair defects is still elusive. We identified key factors of the RNF168 pathway as essential mediators of efficient DNA replication in unperturbed S phase. We found that loss of RNF168 leads to reduced replication fork progression and to reversed fork accumulation, particularly evident at repetitive sequences stalling replication. Slow fork progression depends on MRE11-dependent degradation of reversed forks, implicating RNF168 in reversed fork protection and restart. Consistent with regular nucleosomal organization of reversed forks, the replication function of RNF168 requires H2A ubiquitination. As this novel function is shared with the key DDR players ATM, γH2A.X, RNF8, and 53BP1, we propose that double-stranded ends at reversed forks engage classical DDR factors, suggesting an alternative function of this pathway in preventing genome instability and human disease.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Histonas/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Fase S/fisiologia , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia
4.
EMBO J ; 40(2): e104400, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33215756

RESUMO

The DNA damage response (DDR) is a complex signaling network that relies on cascades of protein phosphorylation, which are initiated by three protein kinases of the family of PI3-kinase-related protein kinases (PIKKs): ATM, ATR, and DNA-PK. ATM is missing or inactivated in the genome instability syndrome, ataxia-telangiectasia (A-T). The relative shares of these PIKKs in the response to genotoxic stress and the functional relationships among them are central questions in the genome stability field. We conducted a comprehensive phosphoproteomic analysis in human wild-type and A-T cells treated with the double-strand break-inducing chemical, neocarzinostatin, and validated the results with the targeted proteomic technique, selected reaction monitoring. We also matched our results with 34 published screens for DDR factors, creating a valuable resource for identifying strong candidates for novel DDR players. We uncovered fine-tuned dynamics between the PIKKs following genotoxic stress, such as DNA-PK-dependent attenuation of ATM. In A-T cells, partial compensation for ATM absence was provided by ATR and DNA-PK, with distinct roles and kinetics. The results highlight intricate relationships between these PIKKs in the DDR.


Assuntos
Dano ao DNA/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteômica/métodos , Transdução de Sinais/genética
5.
EMBO Rep ; 24(5): e56112, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943023

RESUMO

As stem cells divide, they acquire mutations that can be passed on to daughter cells. To mitigate potentially deleterious outcomes, cells activate the DNA damage response (DDR) network, which governs several cellular outcomes following DNA damage, including repairing DNA or undergoing apoptosis. At the helm of the DDR are three PI3-like kinases including Ataxia-Telangiectasia Mutated (ATM). We report here that knockdown of ATM in planarian flatworms enables stem cells to withstand lethal doses of radiation which would otherwise induce cell death. In this context, stem cells circumvent apoptosis, replicate their DNA, and recover function using homologous recombination-mediated DNA repair. Despite radiation exposure, atm knockdown animals survive long-term and regenerate new tissues. These effects occur independently of ATM's canonical downstream effector p53. Together, our results demonstrate that in planarians, ATM promotes radiation-induced apoptosis. This acute, ATM-dependent apoptosis is a key determinant of long-term animal survival. Our results suggest that inhibition of ATM in these organisms could, therefore, potentially favor cell survival after radiation without obvious effects on stem cell behavior.


Assuntos
Ataxia Telangiectasia , Planárias , Animais , Planárias/genética , Planárias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA , Dano ao DNA , Fosforilação , Proteínas de Ciclo Celular/metabolismo
6.
J Allergy Clin Immunol ; 153(5): 1392-1405, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38280573

RESUMO

BACKGROUND: Ataxia telangiectasia (AT) is characterized by cerebellar ataxia, telangiectasia, immunodeficiency, and increased cancer susceptibility and is caused by mutations in the ataxia telangiectasia mutated (ATM) gene. The immunodeficiency comprises predominantly immunoglobulin deficiency, mainly IgA and IgG2, with a variable severity. So far, the exact mechanisms underlying the immunoglobulin deficiency, especially the variable severity, remain unelucidated. OBJECTIVE: We characterized the clinical impact of immunoglobulin deficiencies in AT and elucidated their mechanisms in AT. METHODS: We analyzed long-term immunoglobulin levels, immunophenotyping, and survival time in our cohort (n = 87, median age 16 years; maximum 64 years). Somatic hypermutation and class-switch junctions in B cells were analyzed by next-generation sequencing. Furthermore, an in vitro class-switching induction assay was performed, followed by RNA sequencing, to assess the effect of ATM inhibition. RESULTS: Only the hyper-IgM AT phenotype significantly worsened survival time, while IgA or IgG2 deficiencies did not. The immunoglobulin levels showed predominantly decreased IgG2 and IgA. Moreover, flow cytometric analysis demonstrated reduced naive B and T lymphocytes and a deficiency of class-switched IgG2 and IgA memory B cells. Somatic hypermutation frequencies were lowered in IgA- and IgG2-deficient patients, indicating hampered germinal center reaction. In addition, the microhomology of switch junctions was elongated, suggesting alternative end joining during class-switch DNA repair. The in vitro class switching and proliferation were negatively affected by ATM inhibition. RNA sequencing analysis showed that ATM inhibitor influenced expression of germinal center reaction genes. CONCLUSION: Immunoglobulin deficiency in AT is caused by disturbed development of class-switched memory B cells. ATM deficiency affects both germinal center reaction and choice of DNA-repair pathway in class switching.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Ataxia Telangiectasia , Linfócitos B , Switching de Imunoglobulina , Humanos , Ataxia Telangiectasia/imunologia , Ataxia Telangiectasia/genética , Adulto , Adolescente , Masculino , Feminino , Pessoa de Meia-Idade , Criança , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linfócitos B/imunologia , Adulto Jovem , Idoso , Hipermutação Somática de Imunoglobulina , Pré-Escolar , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue
7.
Neurobiol Dis ; 199: 106562, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38876322

RESUMO

Ataxia Telangiectasia (AT) is a rare disorder caused by mutations in the ATM gene and results in progressive neurodegeneration for reasons that remain poorly understood. In addition to its central role in nuclear DNA repair, ATM operates outside the nucleus to regulate metabolism, redox homeostasis and mitochondrial function. However, a systematic investigation into how and when loss of ATM affects these parameters in relevant human neuronal models of AT was lacking. We therefore used cortical neurons and brain organoids from AT-patient iPSC and gene corrected isogenic controls to reveal levels of mitochondrial dysfunction, oxidative stress, and senescence that vary with developmental maturity. Transcriptome analyses identified disruptions in regulatory networks related to mitochondrial function and maintenance, including alterations in the PARP/SIRT signalling axis and dysregulation of key mitophagy and mitochondrial fission-fusion processes. We further show that antioxidants reduce ROS and restore neurite branching in AT neuronal cultures, and ameliorate impaired neuronal activity in AT brain organoids. We conclude that progressive mitochondrial dysfunction and aberrant ROS production are important contributors to neurodegeneration in AT and are strongly linked to ATM's role in mitochondrial homeostasis regulation.


Assuntos
Ataxia Telangiectasia , Encéfalo , Células-Tronco Pluripotentes Induzidas , Mitocôndrias , Neurônios , Organoides , Estresse Oxidativo , Estresse Oxidativo/fisiologia , Humanos , Organoides/metabolismo , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patologia , Ataxia Telangiectasia/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Espécies Reativas de Oxigênio/metabolismo
8.
Clin Immunol ; 263: 110233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697554

RESUMO

Ataxia-telangiectasia (A-T) is a rare disorder caused by genetic defects of A-T mutated (ATM) kinase, a key regulator of stress response, and characterized by neurodegeneration, immunodeficiency, and high incidence of cancer. Here we investigated NK cells in a mouse model of A-T (Atm-/-) showing that they are strongly impaired at killing tumor cells due to a block of early signaling events. On the other hand, in Atm-/- littermates with thymic lymphoma NK cell cytotoxicity is enhanced as compared with ATM-proficient mice, possibly via tumor-produced TNF-α. Results also suggest that expansion of exhausted NKG2D+ NK cells in Atm-/- mice is driven by low-level expression of stress-inducible NKG2D ligands, whereas development of thymoma expressing the high-affinity MULT1 ligand is associated with NKG2D down-regulation on NK cells. These results expand our understanding of immunodeficiency in A-T and encourage exploring NK cell biology in A-T patients in the attempt to identify cancer predictive biomarkers and novel therapeutic targets.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Animais , Células Matadoras Naturais/imunologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Camundongos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Timoma/imunologia , Timoma/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Citotoxicidade Imunológica , Neoplasias do Timo/imunologia , Neoplasias do Timo/genética , Transdução de Sinais , Proteínas de Membrana , Antígenos de Histocompatibilidade Classe I
9.
J Clin Immunol ; 44(2): 51, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231422

RESUMO

PURPOSE: Ataxia-telangiectasia (A-T) is a rare genetic condition with malfunctioning DNA repair processes resulting in significant clinical findings, including progressive neurologic decline, elevated malignancy risk, immunodeficiency, oculocutaneous telangiectasias, and severe pulmonary disease. Research has been limited into the quality of life of such patients and yet to be completed are studies quantitatively analyzing psychosocial, physical, and cognitive patient-reported outcomes (PROs) within the A-T population. METHODS: PRO evaluations of 90 international adult and pediatric A-T patients and their caregivers were completed via secure online administration of Patient-Reported Outcomes Measurement Information System (PROMIS) short forms evaluating anger, cognition, mood, social health, fatigue, pain, anxiety, and upper extremity function. The impact of age, gender, race/ethnicity, prior malignancy diagnosis, and current supportive treatment interventions on such PROs was additionally assessed. Finally, given the importance of medical providers in the care of A-T patients and the impact of patient satisfaction on healthcare outcomes, we further analyzed, via a novel survey, how patients and caregivers perceived their primary A-T healthcare provider's A-T expertise, trustworthiness, accessibility, and level of compassion. RESULTS/CONCLUSION: It was found that a diagnosis of A-T complexly impacts patient PROs, but such data offers the potential for preventative and therapeutic interventions to improve the care of such patients. While most A-T patients and their caregivers feel their primary A-T medical provider has expertise and compassion in addition to being accessible and trustworthy, a significant percentage of study subjects did not agree that their provider was an expert in A-T or overall trustworthy.


Assuntos
Ataxia Telangiectasia , Neoplasias , Adulto , Humanos , Criança , Satisfação do Paciente , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/terapia , Qualidade de Vida , Ansiedade
10.
Genes Cells ; 28(9): 642-645, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37341149

RESUMO

Ataxia-telangiectasia (A-T) is a rare devastating hereditary condition, which affects multiple organ systems including cerebellar motor function as well as DNA repair, resulting in a higher incidence of cancer and immunodeficiency. The genetic defect in A-T lies in ATM kinase, which is activated by DNA damage and regulates a plethora of substrates including the p53 tumor suppressor. We have organized an international meeting "The 19th Ataxia-Telangiectasia Workshop 2023 (ATW2023)" with support from the Molecular Biology Society of Japan (MBSJ) and other funders. Here, we report that ATW2023 was successfully held in Kyoto from March 2nd to 5th, 2023 with more than 150 participants traveling from all over the world, despite the still smoldering COVID-19 pandemic. In this meeting report, we will briefly describe the highlights of the meeting and would like to express our gratitude to the MBSJ for the financial support.


Assuntos
Ataxia Telangiectasia , COVID-19 , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/patologia , Proteínas Mutadas de Ataxia Telangiectasia , Pandemias , Dano ao DNA , Reparo do DNA , Proteínas de Ciclo Celular/metabolismo
11.
Mov Disord ; 39(2): 360-369, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37899683

RESUMO

BACKGROUND: Supplementation of nicotinamide riboside (NR) ameliorates neuropathology in animal models of ataxia telangiectasia (A-T). In humans, short-term NR supplementation showed benefits in neurological outcome. OBJECTIVES: The study aimed to investigate the safety and benefits of long-term NR supplementation in individuals with A-T. METHODS: A single-arm, open-label clinical trial was performed in individuals with A-T, receiving NR over a period of 2 years. Biomarkers and clinical examinations were used to assess safety parameters. Standardized and validated neuromotor tests were used to monitor changes in neurological symptoms. Using generalized mixed models, test results were compared to expected disease progression based on historical data. RESULTS: NAD+ concentrations increased rapidly in peripheral blood and stabilized at a higher level than baseline. NR supplementation was well tolerated for most participants. The total scores in the neuromotor test panels, as evaluated at the 18-month time point, improved for all but one participant, primarily driven by improvements in coordination subscores and eye movements. A comparison with historical data revealed that the progression of certain neuromotor symptoms was slower than anticipated. CONCLUSIONS: Long-term use of NR appears to be safe and well tolerated, and it improves motor coordination and eye movements in patients with A-T of all ages. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Telangiectasia , Niacinamida , Animais , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Movimentos Oculares , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Niacinamida/análogos & derivados , Compostos de Piridínio/uso terapêutico
12.
Trends Immunol ; 42(4): 350-365, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663955

RESUMO

ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Imunidade Adaptativa , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Switching de Imunoglobulina
13.
Cerebellum ; 23(2): 502-511, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37120494

RESUMO

Cerebellar neurodegeneration is a classical feature of ataxia telangiectasia (A-T), an autosomal recessive condition caused by loss-of-function mutation of the ATM gene, a gene with multiple regulatory functions. The increased vulnerability of cerebellar neurones to degeneration compared to cerebral neuronal populations in individuals with ataxia telangiectasia implies a specific importance of intact ATM function in the cerebellum. We hypothesised that there would be elevated transcription of ATM in the cerebellar cortex relative to ATM expression in other grey matter regions during neurodevelopment in individuals without A-T. Using ATM transcription data from the BrainSpan Atlas of the Developing Human Brain, we demonstrate a rapid increase in cerebellar ATM expression relative to expression in other brain regions during gestation and remaining elevated during early childhood, a period corresponding to the emergence of cerebellar neurodegeneration in ataxia telangiectasia patients. We then used gene ontology analysis to identify the biological processes represented in the genes correlated with cerebellar ATM expression. This analysis demonstrated that multiple processes are associated with expression of ATM in the cerebellum, including cellular respiration, mitochondrial function, histone methylation, and cell-cycle regulation, alongside its canonical role in DNA double-strand break repair. Thus, the enhanced expression of ATM in the cerebellum during early development may be related to the specific energetic demands of the cerebellum and its role as a regulator of these processes.


Assuntos
Ataxia Telangiectasia , Pré-Escolar , Humanos , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cerebelo/metabolismo , Encéfalo/metabolismo , Córtex Cerebelar/metabolismo
14.
Cerebellum ; 23(2): 455-458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37036622

RESUMO

Ataxia-Telangiectasia (A-T) is an autosomal recessive neurodegenerative disease associated with cerebellar ataxia and extrapyramidal features. A-T has a complex and diverse phenotype with varying rates of disease progression. The development of robust natural history studies and therapeutic trials relies on the accurate recording of phenotype using relevant and validated severity of illness indexes. We compared the commonly used Scale for the Assessment and Rating of Ataxia (SARA) and the disease-specific A-T Neurological Examination Scale Toolkit (A-T NEST), in our adult A-T cohort. We found a strong correlation between A-T NEST and the established SARA score, validating the use of A-T NEST and SARA in capturing the natural history of A-T patients.


Assuntos
Ataxia Telangiectasia , Ataxia Cerebelar , Doenças Neurodegenerativas , Adulto , Humanos , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Índice de Gravidade de Doença , Progressão da Doença
15.
Cerebellum ; 23(2): 363-373, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36806980

RESUMO

Ataxia-telangiectasia (A-T) is a disease caused by mutations in the ATM gene (11q22.3-23.1) that induce neurodegeneration Sasihuseyinoglu AS et al.  Pediatr Allergy Immunol Pulmonol 31(1):9-14, 2018, Teive HAG et al. Parkinsonism Relat Disord 46:3-8, 2018. Clinically, A-T is characterized by ataxia, mucocutaneous telangiectasia, immunodeficiency, and malignancy. Movement disorders have been the most described and well-studied symptoms of A-T. Other studies have reported visuospatial processing disorders, executive function disorders and emotional regulation disorders, which are clinical manifestations that characterize cerebellar cognitive affective syndrome (CCAS) Choy KR et al. Dev Dyn 247(1):33-46, 2018. To describe the neurocognitive and emotional state of pediatric patients with ataxia-telangiectasia and to discuss whether they have cerebellar cognitive affective syndrome. This observational, cross-sectional, and descriptive study included 9 patients with A-T from May 2019 to May 2021. A complete medical history was retrieved, and tests were applied to assess executive functions, visual-motor integration and abilities, language, psychological disorders, and ataxia. Six girls and 3 boys agreed to participate. The age range was 6 to 14 years. The participants included five schoolchildren and four teenagers. Eight patients presented impaired executive functioning. All patients showed some type of error in copying and tracing (distortion) in the performance of visual perceptual abilities. Emotional disorders such as anxiety and depression were observed in six patients. Eight patients presented with dyslalia and impairments in word articulation, all patients presented with ataxia, and seven patients used a wheelchair. All patients presented symptoms consistent with CCAS and had variable cognitive performance.


Assuntos
Ataxia Telangiectasia , Ataxia Cerebelar , Doenças Cerebelares , Masculino , Feminino , Adolescente , Humanos , Criança , Ataxia Telangiectasia/complicações , Estudos Transversais , Ataxia Cerebelar/genética , Cognição/fisiologia
16.
Cerebellum ; 23(2): 722-756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37119406

RESUMO

Ataxia telangiectasia (A-T) is a rare, multisystem progressive condition that typically presents in early childhood. In the absence of cure, people with A-T require coordinated multidisciplinary care to manage their complex array of needs and to minimize the disease burden. Although symptom management has proven benefits for this population, including improved quality of life and reduced complications, there is a need for guidance specific to the nursing and allied healthcare teams who provide care within the community. A scoping review, adopting the Joanna Briggs Institute methodology, was undertaken. It aimed to identify and map the available expertise from nursing and allied healthcare and management of children and young people with A-T ≤ 18 years of age. A rigorous search strategy was employed which generated a total of 21,118 sources of evidence, of which 50 were selected for review following screening by experts. A range of interventions were identified that reported a positive impact on A-T-related impairments, together with quality of life, indicating that outcomes can be improved for this population. Most notable interventions specific to A-T include therapeutic exercise, inspiratory muscle training, and early nutritional assessment and intervention. Further research will be required to determine the full potential of the identified interventions, including translatability to the A-T setting for evidence related to other forms of ataxia. Large gaps exist in the nursing and allied health evidence-base, highlighting a need for robust research that includes children and young people with A-T and their families to better inform and optimize management strategies.


Assuntos
Ataxia Telangiectasia , Qualidade de Vida , Criança , Humanos , Pré-Escolar , Adolescente , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/terapia , Pessoal Técnico de Saúde
17.
Doc Ophthalmol ; 148(2): 107-114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351363

RESUMO

PURPOSE: Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by progressive neurological deficits, including prominent oculomotor dysfunction. We report 5 cases of eye movement assessment in children 9-15 years old with A-T. METHODS: Three different oculomotor tasks (gaze holding, visually guided saccades and visual search) were used, and video-oculography was performed. Additionally, the scale for the assessment and rating of ataxia (SARA) score was used to assess severity of the cerebellar ataxia. RESULTS: Unstable gaze holding, nystagmus and saccadic intrusions were found. In addition to psychophysiological assessment results, we provide quantitative analysis of oculomotor activity, revealing a specific abnormal oculomotor pattern, consisting of (i) marked saccade hypermetria, (ii) unstable gaze holding, and (iii) gaze-evoked nystagmus. CONCLUSION: Our study opens the prospect to evaluate efficacy and safety of alternative methods for supporting the patient and improving his/her life quality.


Assuntos
Ataxia Telangiectasia , Nistagmo Patológico , Humanos , Criança , Feminino , Masculino , Adolescente , Movimentos Oculares , Ataxia Telangiectasia/diagnóstico , Eletrorretinografia , Movimentos Sacádicos , Nistagmo Patológico/diagnóstico
18.
J Neurochem ; 166(4): 654-677, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37319113

RESUMO

Cerebellar ataxia is often the first and irreversible outcome in the disease of ataxia-telangiectasia (A-T), as a consequence of selective cerebellar Purkinje neuronal degeneration. A-T is an autosomal recessive disorder resulting from the loss-of-function mutations of the ataxia-telangiectasia-mutated ATM gene. Over years of research, it now becomes clear that functional ATM-a serine/threonine kinase protein product of the ATM gene-plays critical roles in regulating both cellular DNA damage response and central carbon metabolic network in multiple subcellular locations. The key question arises is how cerebellar Purkinje neurons become selectively vulnerable when all other cell types in the brain are suffering from the very same defects in ATM function. This review intended to comprehensively elaborate the unexpected linkages between these two seemingly independent cellular functions and the regulatory roles of ATM involved, their integrated impacts on both physical and functional properties, hence the introduction of selective vulnerability to Purkinje neurons in the disease will be addressed.


Assuntos
Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Células de Purkinje/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Serina-Treonina Quinases/genética , Dano ao DNA/genética , Proteínas de Ciclo Celular/genética
19.
Biochem Biophys Res Commun ; 670: 79-86, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37285721

RESUMO

BACKGROUND: Iron-sulfur clusters play a central role in cellular function and are regulated by the ATM protein. Iron-sulfur clusters are part of the cellular sulfide pool, which functions to maintain cardiovascular health, and consists of free hydrogen sulfide, iron-sulfur clusters, protein bound sulfides, which constitute the total cellular sulfide fraction. ATM protein signaling and the drug pioglitazone share some cellular effects, which led us to examine the effects of this drug on cellular iron-sulfur cluster formation. Additionally, as ATM functions in the cardiovasculature and its signaling may be diminished in cardiovascular disease, we examined pioglitazone in the same cell type, with and without ATM protein expression. METHODS: We examined the effects of pioglitazone treatment on the total cellular sulfide profile, the glutathione redox state, cystathionine gamma-lyase enzymatic activity, and on double-stranded DNA break formation in cells with and without ATM protein expression. RESULTS: Pioglitazone increased the acid-labile (iron-sulfur cluster) and bound sulfur cellular fractions and reduced cystathionine gamma-lyase enzymatic activity in cells with and without ATM protein expression. Interestingly, pioglitazone also increased reduced glutathione and lowered DNA damage in cells without ATM protein expression, but not in ATM wild-type cells. These results are interesting as the acid-labile (iron-sulfur cluster), bound sulfur cellular fractions, and reduced glutathione are low in cardiovascular disease. CONCLUSION: Here we found that pioglitazone increased the acid-labile (iron-sulfur cluster) and bound sulfur cellular fractions, impinges on hydrogen sulfide synthesis, and exerts beneficial effect on cells with deficient ATM protein signaling. Thus, we show a novel pharmacologic action for pioglitazone.


Assuntos
Doenças Cardiovasculares , Sulfeto de Hidrogênio , Proteínas Ferro-Enxofre , Humanos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pioglitazona/farmacologia , Cistationina gama-Liase/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Glutationa/metabolismo , Ferro/metabolismo
20.
BMC Cancer ; 23(1): 835, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674118

RESUMO

BACKGROUND: Loss of expression of the gene ataxia-telangiectasia mutated (ATM), occurring in patients with multiple primary malignancies, including pancreatic cancer, is associated with poor prognosis. In this study, we investigated the detailed molecular mechanism through which ATM expression affects the prognosis of patients with pancreatic cancer. METHODS: The levels of expression of ATM and phosphorylated ATM in patients with pancreatic cancer who had undergone surgical resection were analyzed using immunohistochemistry staining. RNA sequencing was performed on ATM-knockdown pancreatic-cancer cells to elucidate the mechanism underlying the invlovement of ATM in pancreatic cancer. RESULTS: Immunohistochemical analysis showed that 15.3% and 27.8% of clinical samples had low levels of ATM and phosphorylated ATM, respectively. Low expression of phosphorylated ATM substantially reduced overall and disease-free survival in patients with pancreatic cancer. In the pancreatic cancer cell lines with ATM low expression, resistance to gemcitabine was demonstrated. The RNA sequence demonstrated that ATM knockdown induced the expression of MET and NTN1. In ATM knockdown cells, it was also revealed that the protein expression levels of HIF-1α and antiapoptotic BCL-2/BAD were upregulated. CONCLUSIONS: These findings demonstrate that loss of ATM expression increases tumor development, suppresses apoptosis, and reduces gemcitabine sensitivity. Additionally, loss of phosphorylated ATM is associated with a poor prognosis in patients with pancreatic cancer. Thus, phosphorylated ATM could be a possible target for pancreatic cancer treatment as well as a molecular marker to track patient prognosis.


Assuntos
Ataxia Telangiectasia , Neoplasias Pancreáticas , Humanos , Gencitabina , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA