Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Sensors (Basel) ; 23(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36772348

RESUMO

Globally, corrosion is the costliest cause of the deterioration of metallic and concrete structures, leading to significant financial losses and unexpected loss of life. Therefore, corrosion monitoring is vital to the assessment of structures' residual performance and for the identification of pathologies in early stages for the predictive maintenance of facilities. However, the high price tag on available corrosion monitoring systems leads to their exclusive use for structural health monitoring applications, especially for atmospheric corrosion detection in civil structures. In this paper a systematic literature review is provided on the state-of-the-art electrochemical methods and physical methods used so far for corrosion monitoring compatible with low-cost sensors and data acquisition devices for metallic and concrete structures. In addition, special attention is paid to the use of these devices for corrosion monitoring and detection for in situ applications in different industries. This analysis demonstrates the possible applications of low-cost sensors in the corrosion monitoring sector. In addition, this study provides scholars with preferred techniques and the most common microcontrollers, such as Arduino, to overcome the corrosion monitoring difficulties in the construction industry.

2.
Sci Technol Adv Mater ; 21(1): 359-370, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32939161

RESUMO

The empirical modeling methods are widely used in corrosion behavior analysis. But due to the limited regression ability of conventional algorithms, modeling objects are often limited to individual factors and specific environments. This study proposed a modeling method based on machine learning to simulate the marine atmospheric corrosion behavior of low-alloy steels. The correlations between material, environmental factors and corrosion rate were evaluated, and their influences on the corrosion behavior of steels were analyzed intuitively. By using the selected dominating factors as input variables, an optimized random forest model was established with a high prediction accuracy of corrosion rate (R2 values, 0.94 and 0.73 to the training set and testing set) to different low-alloy steel samples in several typical marine atmospheric environments. The results demonstrated that machine learning was efficient in corrosion behavior analysis, which usually involves a regression analysis of multiple factors.

3.
Sensors (Basel) ; 19(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650633

RESUMO

An atmospheric corrosion monitor (ACM) is an instrument used to track the corrosion status of materials. In this paper, a galvanic cell sensor with a simple structure, flexible parameters, and low cost was proposed for constructing a novel ACM, which consisted of three layers: the upper layer was gold, used as the cathode; the lower layer was corroded metal, used as the anode; and the middle layer was epoxy resin, used to separate the cathode and anode. Typically, the anode and epoxy resin were hollowed out, and the hollow parts were filled with electrolyte when it was wet to form a corrosive galvanic cell. Specifically, the corrosion rate was obtained by measuring the short circuit current of the cell. The sensor was made of a printed circuit board (PCB) or flexible printed circuit (FPC) and a metal coupon, which allowed for early control of the electrical parameters (including sensitivity and capacity) and could be combined with various metals. Additionally, the sensor feasibility was studied in water droplet experiments, during which the corrosive current changed with the electrolyte evaporation. The sensor practicability was also verified in a salt spray test, and the electric charge was compared using the thickness loss of bare coupons. A contrast test was also conducted for the corrosivity of different sensors made of aluminum, iron and copper.

4.
Heliyon ; 10(8): e29391, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638972

RESUMO

In this study was examined the response of carbon steel to atmospheric corrosion after one-year exposure in Valle de Aburrá, a subregion located in northwestern Colombia. The study involved the assessment of material mass loss and corrosion rate, the characterization of atmospheric aggressiveness, and the analysis of the morphology and composition of corrosion products in five different sites. Climatological and meteorological factors were assessed by testing for chloride content, sulfur dioxide levels, and time of wetness (TOW). The analysis of corrosion products was conducted using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. Based on corrosion rates, two sites exhibited a more aggressive environment, with a corrosivity category of C3, while the remaining sites were categorized as C2. The study confirmed the presence of lepidocrocite and goethite phases on the surface of carbon steel at all test sites. Data analysis revealed that both the TOW and the industrial activity significantly influence the corrosion of this metal.

5.
Materials (Basel) ; 17(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793361

RESUMO

In this work, the dynamic marine atmospheric corrosion behavior of AZ91 Mg alloy sailing from Yellow Sea to Western Pacific Ocean was studied. The corrosion rates were measured using the weight loss method. The microstructure, phase, and chemical composition of corroded samples were investigated by SEM, EDS, XRD, and XPS. The results show that the evolution of corrosion rates of AZ91 Mg alloy was divided into three stages: rapidly increasing during the first 3 months, then remaining stable for the next three months, and finally decreasing after 6 months. The annual corrosion rate of Mg alloy reached 32.50 µm/y after exposure for 12 months in a dynamic marine atmospheric environment, which was several times higher than that of the static field exposure tests. AZ91 magnesium alloy was mainly subjected to localized corrosion with more destructiveness to Mg parts, which is mainly due to the synergistic effect of high relative humidity, the high deposition rate of chloride ion, sulfur dioxide acidic gas produced by fuel combustion, and rapid temperature changes caused by the alternating changes in longitude and latitude during navigation. As the exposure time increased, the corrosion pits gradually increased and deepened. The maximum depth of the corrosion pit was 197 µm after 12 months of exposure, which is almost 6 times the average corrosion depth. This study provides scientific data support for the application of magnesium alloys in shipborne aircraft and electronic equipment. The results could provide guidance for the design of new magnesium alloys and development of anti-corrosion technologies.

6.
Heliyon ; 10(1): e23842, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205328

RESUMO

To accelerate the formation of the protective rust layer on weathering steel, a new pre-corrosion method containing a replacement reaction was explored. This process was mixed with Cu in the pre-corrosion rust layer to imitate the enrichment of alloying elements through long-term corrosion. By using various analysis methods, the initial corrosion behavior of weathering steel and carbon steel with/without pre-corrosion treatment was studied under indoor wet-dry cycle conditions. The results showed that the pre-corrosion treatment covers the steel surface with a rust layer containing high-concentration Cu. Subsequently, the corrosion uniformity of the weathering steel was significantly improved, and the protective performance of corrosion products was enhanced due to the high concentration of Cu enrichment. This technology is expected to provide a new way to perfect the service performance of weathering steel at the initial stage of application.

7.
Heliyon ; 10(9): e30541, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756570

RESUMO

The study reports the development of a liquid smoke solution of rice husk ash (RHA) as a green corrosion inhibitor in NH4Cl solution in approaching corrosion protection for refinery facilities. The recent utilization of RHA has a partial solution to address the possible chemical to form a filming layer to disconnect bare metal and their environment. This work prepared the RHA solution by condensing the RHA vapor before adding it to various concentrations. The corrosion test of potentiodynamic and electrochemicals intends to discover the inhibitor's corrosion resistance before examining the electronic transition corresponding to the contribution of several functional groups using Ultraviolet Visible (UV-Vis) and Fourier-Transform Infrared Spectroscopy (FTIR). Surface evaluation intends to unveil the nature of the corrosion by utilizing the Scanning Electronic and Atomic Force Microscope. The corrosion test result shows the depression of corrosion rate to 0.120 mmpy with high efficiency beyond 96 % in the addition of 7.5 ppm RHA inhibitor. The greater Nyquist semicircle diameter at high concentrations increases the adsorption of the RHA on the surface of C1018. The electronic transition of n-π* and π -π* shows an extensive contribution of C[bond, double bond]C, C[bond, double bond]O, and -OH based on the UV-Vis and FTIR test. The formation of a complex compound of Fe-(NH4Cl-RHA)n blocks the corrosion active sites to reduce the corrosion. This study paves the way for using RHA as an organic compound under NH4Cl conditions, such as in a refinery process facility.

8.
Materials (Basel) ; 16(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570030

RESUMO

Atmospheric corrosion is a significant challenge faced by the aviation industry as it considerably affects the structural integrity of an aircraft operated for long periods. Therefore, an appropriate corrosion deterioration model is required to predict corrosion problems. However, practical application of the deterioration model is challenging owing to the limited data available for the parameter estimation. Thus, a high uncertainty in prediction is unavoidable. To address these challenges, a method of integrating a physics-based model and the monitoring data on a Bayesian network (BN) is presented herein. Atmospheric corrosion is modeled using the simulation method, and a BN is constructed using GeNie. Moreover, model calibration is performed using the monitoring data collected from aircraft parking areas. The calibration approach is an improvement over existing models as it incorporates actual environmental data, making it more accurate and applicable to real-world scenarios. In conclusion, our research emphasizes the importance of precise corrosion models for predicting and managing atmospheric corrosion on carbon steel. The study results open new avenues for future research, such as the incorporation of additional data sources to further improve the accuracy of corrosion models.

9.
Materials (Basel) ; 16(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630004

RESUMO

This study evaluated the behavior of three paint systems exposed to the Antarctic marine environment for 45 months compared to a control of uncoated carbon steel with a determined corrosion rate. At the study site, all environmental conditions, solar radiation, and the concentration of environmental pollutants (Cl- and SO2) were evaluated. The paint systems differed in terms of the primer and top coat. Coated samples were studied before and after exposure. They were evaluated visually and using SEM to determine adhesion, abrasion, and contact angle; using the Evans X-Cut Tape Test; using ATR-FTIR spectroscopy to analyze the state of aging of the top layer; and using electrochemical impedance spectroscopy (EIS) for coat protection characterization. The corrosion rate obtained for steel was 85.64 µm year-1, which aligned with a C5 environmental corrosivity category. In general, the evaluation in the period studied showed the paint systems had good adhesion and resistance to delamination, without the presence of surface rust, and exhibited some loss of brightness, an increase in the abrasion index, and a decrease in the percentage of reflectance due to aging. EIS showed good protection capability of the three coating schemes. In general, this type of paint system has not previously been evaluated in an extreme environment after 45 months of exposure to the environment. The results showed that the best behavior was found for the system whose top layer was acrylic-aliphatic polyurethane.

10.
Materials (Basel) ; 16(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241283

RESUMO

Galvanized steel is a cost-effective and corrosion-resistant material with high strength, making it a popular choice for various engineering applications. In order to investigate the effects of ambient temperature and galvanized layer state on the corrosion of galvanized steel in a high-humidity neutral atmosphere environment, we placed three types of specimens (Q235 steel, undamaged galvanized steel, damaged galvanized steel) in a neutral atmosphere environment with a humidity of 95% at three different temperatures (50 °C, 70 °C, and 90 °C) for testing. The corrosion behavior of specimens under simulated high-temperature and high-humidity conditions was studied using weight changes, macroscopic and microscopic observations, and analysis of the corrosion products of the specimens before and after corrosion. Emphasis was placed on examining the effects of temperature and damage to the galvanized layer on the corrosion rate of the specimens. The findings indicated that damaged galvanized steel retains good corrosion resistance at 50 °C. However, at 70 °C and 90 °C, the damage to the galvanized layer will accelerate the corrosion of the base metal.

11.
Materials (Basel) ; 16(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241306

RESUMO

Chamber protection is a promising and quickly developing method of vapor-phase protection of metals against atmospheric corrosion by inhibitors. It was shown that chamber treatment with 2-ethylhexanoic acid (EHA) efficiently inhibits the initiation of zinc corrosion. The optimum conditions (temperature and duration) of zinc treatment with vapors of this compound were determined. If these conditions are met, adsorption films of EHA with thicknesses up to 100 nm are formed on the metal surface. It was found that their protective properties increase during the first day as zinc is exposed to air after chamber treatment. The anticorrosive action of adsorption films is due both to the surface being shielded from the corrosive environment and to the inhibition of corrosion processes on the active surface of the metal. Corrosion inhibition was caused by the ability of EHA to convert zinc to the passive state and inhibit its local anionic depassivation.

12.
Heliyon ; 9(7): e17811, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483784

RESUMO

We studied atmospheric corrosion on Rapa Nui Island, using galvanized and non-galvanized SAE 1020 steel samples exposed on racks. We also added Charpy samples of both materials to directly determine the effect of corrosion rate on these materials' impact toughness. The results indicated a correlation between corrosion rate and toughness loss in the studied materials. In the corrosion study, we could also demonstrate the effect from increased insular population growth on contaminants which aid atmospheric corrosivity. Results showed that atmospheric SO2 has tripled compared with similar corrosion studies done 20 years ago (Mapa Iberoamericano de Corrosión, MICAT), increasing corrosion rates. Our results show how human factors can influence changes in environmental variables that strengthen corrosion.

13.
Sci Total Environ ; 885: 163751, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37146821

RESUMO

Measured salt compositions in dust collected over roughly the last decade from surfaces of in-service stainless-steel alloys at four locations around the United States are presented, along with the predicted brine compositions that would result from deliquescence of these salts. The salt compositions vary greatly from ASTM seawater and from laboratory salts (i.e., NaCl or MgCl2) commonly used on corrosion testing. The salts contained relatively high amounts of sulfates and nitrates, evolved to basic pH values, and exhibited deliquescence relative humidity values (RH) higher than seawater. Additionally, inert dust in components were quantified and considerations for laboratory testing are presented. The observed dust compositions are discussed in terms of the potential corrosion behavior and are compared to commonly used accelerated testing protocols. Finally, ambient weather conditions and their influence on diurnal fluctuations in temperature (T) and RH on heated metal surfaces are evaluated and a relevant diurnal cycle for laboratory testing a heated surface has been developed. Suggestions for future accelerated tests are proposed that include exploration of the effects of inert dust particles on atmospheric corrosion, chemistry considerations, and realistic diurnal fluctuations in T and RH. Understanding mechanisms in both realistic and accelerated environments will allow development of a corrosion factor (i.e., scaling factor) for the extrapolation of laboratory-scale test results to real world applications.

14.
Materials (Basel) ; 16(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37109969

RESUMO

The automobile industry commonly uses cyclic corrosion tests (CCTs) to evaluate the durability of materials. However, the extended evaluation period required by CCTs can pose challenges in this fast-paced industry. To address this issue, a new approach that combines a CCT with an electrochemically accelerated corrosion test has been explored, to shorten the evaluation period. This method involves the formation of a corrosion product layer through a CCT, which leads to localized corrosion, followed by applying an electrochemically accelerated corrosion test using an agar gel electrolyte to preserve the corrosion product layer as much as possible. The results indicate that this approach can achieve comparable localized corrosion resistance, with similar localized corrosion area ratios and maximum localized corrosion depths to those obtained through a conventional CCT in half the time.

15.
Materials (Basel) ; 16(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068073

RESUMO

This study delves into the atmospheric corrosion behavior of chromium-free complex-phase (CP) steel, specifically investigating the influence of wet/dry frequency and ratio in cyclic corrosion tests (CCT). The study employs a modified ISO 14993 standard CCT method, which involves salt spray, dry, and wet stages. After 15 and 30 CCT cycles, mass loss, maximum corrosion depth, and corrosion products were analyzed to gain insights into corrosion mechanisms. In general, increasing the frequency and wet/dry stage ratio in CCT extends the time for autocatalytic reactions to occur, leading to accelerated localized CP steel corrosion and increased pitting factors. However, as the rust layer thickens, uniform corrosion may also intensify, so careful considerations are necessary. This study underscores the importance of controlling the frequency and ratio of wet/dry stages in CCT for effectively analyzing localized corrosion behavior in specimens.

16.
Materials (Basel) ; 16(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569917

RESUMO

Zinc-coated carbon steel is commonly used in the construction of buildings, infrastructure objects such as roads and bridges, automotive production, etc. Coatings based on zinc-aluminum-magnesium alloys that may have better corrosion resistance than zinc have been developed. The coatings made of the new alloys have been available on the market for a shorter period of time than conventional zinc coatings. This paper presents data on the corrosion resistance of zinc and zinc-aluminum-magnesium coatings on carbon steel obtained by tests in four locations in Russia with marine and non-marine atmospheres. Four one-year exposures at the beginning of each season and two-year tests were performed. It is shown that the corrosion resistance of the coatings depends significantly on the beginning of the exposure. The categories of atmosphere corrosivity in relation to the coatings were determined at each location. Based on the dose-response function (DRF) for zinc developed for the territory of Russia, DRFs for the coatings were obtained. A match between the categories of atmosphere corrosivity determined by the first-year corrosion losses and estimated from the values of corrosion losses calculated using the DRF is shown. Based on the data of two-year tests, the variation in the corrosion rate over time is obtained. The corrosion rates of the coatings in the territory of Russia are compared to the corrosion rates of coatings observed in various locations around the world. An approximate estimate of the service life of the coatings at the test sites is given.

17.
Materials (Basel) ; 16(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687656

RESUMO

Additive manufacturing (AM) allows for optimized part design, reducing weight compared to conventional manufacturing. However, the microstructure, surface state, distribution, and size of internal defects (e.g., porosities) are very closely related to the AM fabrication process and post-treatment operations. All these parameters can have a strong impact on the corrosion and fatigue performance of the final component. Thus, the fatigue-corrosion behavior of the 3D-printed (L-PBF) AlSi10Mg aluminum alloy has been investigated. The influence of load sequence (sequential vs. combined) was explored using Wöhler diagrams. Surface roughness and defects in AM materials were examined, and surface treatment was applied to improve surface quality. The machined specimens showed the highest fatigue properties regardless of load sequence by improving both the roughness and removing the contour layer containing the highest density of defect. The impact of corrosion was more pronounced for as-printed specimens as slightly deeper pits were formed, which lowered the fatigue-corrosion life. As discussed, the corrosion, fatigue and fatigue-corrosion mechanisms were strongly related to the local microstructure and existing defects in the AM sample.

18.
Materials (Basel) ; 15(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955295

RESUMO

The composition, structure, and protective and hydrophobic properties of nanoscale films formed layer-by-layer in solutions of sodium dodecylphosphonate (SDDP) and vinyltrimethoxysilane or n-octyltriethoxysilane (OTES) on the zinc surface with different morphologies were studied by SEM, XPS, water contact angle measurements, and electrochemical and corrosion tests. The protective, hydrophobic properties of phosphonate-siloxane films on zinc and their stability in a corrosive media are determined both by the initial surface morphology and composition of the surface oxide layer, and by the nature of inhibitors. It was shown that preliminary laser texturing of the zinc surface is preferable than chemical etching to enhance the anticorrosive properties of the resulting thin films. The most stable films with excellent superhydrophobic and protective properties in atmospheres of high humidity and salt spray are formed on the zinc surface with fractal morphology during layer-by-layer passivation with SDDP and OTES.

19.
Heliyon ; 8(9): e10438, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36110235

RESUMO

Atmospheric corrosion maps can be used to conduct a fast and graphical assessment of material deterioration in specific geographic environments. These maps are a key tool for selecting the most adequate materials in terms of corrosion resistance, maintenance, and cost-efficiency in outdoor constructions. Several studies have evaluated the effects of environmental factors and pollutants on building materials at local, regional, national, and international levels. However, not enough atmospheric corrosion maps are readily available, possibly due to the complexity of the variables that should be considered to construct them, which include weather, meteorological, and pollution-related factors that vary in space and time. This article presents a thorough literature review of atmospheric corrosion maps published between 1971 and 2021 mainly indexed in the Scopus database. It is complemented with a detailed review of books, journals, and projects by research centers that focuses on the methodologies, parameters, and tools that have been used to construct said maps. Most of the available maps are outdated, which highlights the need for new maps that reflect recent global changes in atmospheric pollution and temperature that can intensify metal deterioration in some places.

20.
Front Chem ; 10: 820379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321477

RESUMO

This work investigates the previously unexplored impact of tensile stress on oxygen reduction reaction (ORR) kinetics of a precipitation-hardened, stainless-steel fastener material, UNS S13800. ORR is known to drive localized and galvanic corrosion in aircraft assemblies and greater understanding of this reaction on structural alloys is important in forecasting component lifetime and service requirements. The mechano-electrochemical behavior of UNSS13800 was examined using amperometry to measure the reduction current response to tensile stress. Mechanical load cycles within the elastic regime demonstrated reversible electrochemical current shifts under chloride electrolyte droplets that exhibited a clear potential dependence. Strain ramping produced current peaks with a strain rate dependence, which was distinct from the chronoamperometric shifts during static tensile load conditions. Finally, mechanistic insight into the dynamic and static responses was obtained by deoxygenation, which demonstrated ORR contributions that were distinct from other reductive processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA