Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 79: 295-302, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25463275

RESUMO

Rapid activation causes remodeling of atrial myocytes resembling that which occurs in experimental and human atrial fibrillation (AF). Using this cellular model, we previously observed transcriptional upregulation of proteins implicated in protein misfolding and amyloidosis. For organ-specific amyloidoses such as Alzheimer's disease, preamyloid oligomers (PAOs) are now recognized to be the primary cytotoxic species. In the setting of oxidative stress, highly-reactive lipid-derived mediators known as γ-ketoaldehydes (γ-KAs) have been identified that rapidly adduct proteins and cause PAO formation for amyloid ß1-42 implicated in Alzheimer's. We hypothesized that rapid activation of atrial cells triggers oxidative stress with lipid peroxidation and formation of γ-KAs, which then rapidly crosslink proteins to generate PAOs. To investigate this hypothesis, rapidly-paced and control, spontaneously-beating atrial HL-1 cells were probed with a conformation-specific antibody recognizing PAOs. Rapid stimulation of atrial cells caused the generation of cytosolic PAOs along with a myocyte stress response (e.g., transcriptional upregulation of Nppa and Hspa1a), both of which were absent in control, unpaced cells. Rapid activation also caused the formation of superoxide and γ-KA adducts in atriomyocytes, while direct exposure of cells to γ-KAs resulted in PAO production. Increased cytosolic atrial natriuretic peptide (ANP), and the generation of ANP oligomers with exposure to γ-KAs and rapid atrial HL-1 cell stimulation, strongly suggest a role for ANP in PAO formation. Salicylamine (SA) is a small molecule scavenger of γ-KAs that can protect proteins from modification by these reactive compounds. PAO formation and transcriptional remodeling were inhibited when cells were stimulated in the presence of SA, but not with the antioxidant curcumin, which is incapable of scavenging γ-KAs. These results demonstrate that γ-KAs promote protein misfolding and PAO formation as a component of the atrial cell stress response to rapid activation, and they provide a potential mechanistic link between oxidative stress and atrial cell injury.


Assuntos
Aldeídos/farmacologia , Amiloide/metabolismo , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Dobramento de Proteína/efeitos dos fármacos , Multimerização Proteica , Aminas/farmacologia , Animais , Fator Natriurético Atrial/metabolismo , Estimulação Cardíaca Artificial , Linhagem Celular , Curcumina/farmacologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Átrios do Coração/efeitos dos fármacos , Humanos , Camundongos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Superóxidos/metabolismo
2.
Cells ; 13(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38534327

RESUMO

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, yet the cellular and molecular mechanisms underlying the AF substrate remain unclear. Isolevuglandins (IsoLGs) are highly reactive lipid dicarbonyl products that mediate oxidative stress-related injury. In murine hypertension, the lipid dicarbonyl scavenger 2-hydroxybenzylamine (2-HOBA) reduced IsoLGs and AF susceptibility. We hypothesized that IsoLGs mediate detrimental pathophysiologic effects in atrial cardiomyocytes that promote the AF substrate. Using Seahorse XFp extracellular flux analysis and a luminescence assay, IsoLG exposure suppressed intracellular ATP production in atrial HL-1 cardiomyocytes. IsoLGs caused mitochondrial dysfunction, with reduced mitochondrial membrane potential, increased mitochondrial reactive oxygen species (ROS) with protein carbonylation, and mitochondrial DNA damage. Moreover, they generated cytosolic preamyloid oligomers previously shown to cause similar detrimental effects in atrial cells. In mouse atrial and HL-1 cells, patch clamp experiments demonstrated that IsoLGs rapidly altered action potentials (AP), implying a direct effect independent of oligomer formation by reducing the maximum Phase 0 upstroke slope and shortening AP duration due to ionic current modifications. IsoLG-mediated mitochondrial and electrophysiologic abnormalities were blunted or totally prevented by 2-HOBA. These findings identify IsoLGs as novel mediators of oxidative stress-dependent atrial pathophysiology and support the investigation of dicarbonyl scavengers as a novel therapeutic approach to prevent AF.


Assuntos
Fibrilação Atrial , Benzilaminas , Doenças Mitocondriais , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Lipídeos/química , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA