Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cereb Cortex ; 33(9): 5597-5612, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36418925

RESUMO

Recent long-term measurements of neuronal activity have revealed that, despite stability in large-scale topographic maps, the tuning properties of individual cortical neurons can undergo substantial reformatting over days. To shed light on this apparent contradiction, we captured the sound response dynamics of auditory cortical neurons using repeated 2-photon calcium imaging in awake mice. We measured sound-evoked responses to a set of pure tone and complex sound stimuli in more than 20,000 auditory cortex neurons over several days. We found that a substantial fraction of neurons dropped in and out of the population response. We modeled these dynamics as a simple discrete-time Markov chain, capturing the continuous changes in responsiveness observed during stable behavioral and environmental conditions. Although only a minority of neurons were driven by the sound stimuli at a given time point, the model predicts that most cells would at least transiently become responsive within 100 days. We observe that, despite single-neuron volatility, the population-level representation of sound frequency was stably maintained, demonstrating the dynamic equilibrium underlying the tonotopic map. Our results show that sensory maps are maintained by shifting subpopulations of neurons "sharing" the job of creating a sensory representation.


Assuntos
Córtex Auditivo , Som , Camundongos , Animais , Estimulação Acústica/métodos , Neurônios/fisiologia , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Percepção Auditiva/fisiologia
2.
J Neurosci ; 42(26): 5254-5267, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35613891

RESUMO

The brain areas that mediate the formation of auditory threat memory and perceptual decisions remain uncertain to date. Candidates include the primary (A1) and secondary (A2) auditory cortex, the medial division of the medial geniculate body (MGm), amygdala, and the temporal association cortex. We used chemogenetic and optogenetic manipulations with in vivo and in vitro patch-clamp recordings to assess the roles of these brain regions in threat memory learning in female mice. We found that conditioned sound (CS) frequency-dependent plasticity resulted in the formation of auditory threat memory in the temporal association cortex. This neural correlated auditory threat memory depended on CS frequency information from A1 glutamatergic subthreshold monosynaptic inputs, CS lateral inhibition from A2 glutamatergic disynaptic inputs, and non-frequency-specific facilitation from MGm glutamatergic monosynaptic inputs. These results indicate that the A2 and MGm work together in an inhibitory-facilitative role.SIGNIFICANCE STATEMENT: The ability to recognize specific sounds to avoid predators or seek prey is a useful survival tool. Improving this ability through experiential learning is an added advantage requiring neural plasticity. As an example, humans must learn to distinguish the sound of a car horn, and thus avoid oncoming traffic. Our research discovered that the temporal association cortex can encode this kind of auditory information through tonal receptive field plasticity. In addition, the results revealed the underlying synaptic mechanisms of this process. These results extended our understanding of how meaningful auditory information is processed in an animal's brain.


Assuntos
Córtex Auditivo , Estimulação Acústica , Tonsila do Cerebelo/fisiologia , Animais , Córtex Auditivo/fisiologia , Condicionamento Clássico/fisiologia , Feminino , Corpos Geniculados/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia
3.
J Neurosci ; 41(46): 9561-9570, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34667069

RESUMO

Post-encoding coordinated reactivation of memory traces distributed throughout interconnected brain regions is thought to be critical for consolidation of memories. However, little is known about the role of neural circuit pathways during post-learning periods for consolidation of memories. To investigate this question, we optogenetically silenced the inputs from both auditory cortex and thalamus in the lateral amygdala (LA) for 15 min immediately following auditory fear conditioning (FC) and examined its effect on fear memory formation in mice of both sexes. Optogenetic inhibition of both inputs disrupted long-term fear memory formation tested 24 h after FC. This effect was specific such that the same inhibition did not affect short-term memory and context-dependent memory. Moreover, long-term memory was intact if the inputs were inhibited at much later time points after FC (3 h or 1 d after FC), indicating that optical inhibition for 15 min itself does not produce any nonspecific deleterious effect on fear memory retrieval. Selective inhibition of thalamic input was sufficient to impair consolidation of auditory fear memory. In contrast, selective inhibition of cortical input disrupted remote fear memory without affecting recent memory. These results reveal a dissociated role of thalamic and cortical input to the LA during early post-learning periods for consolidation of long-term fear memory.SIGNIFICANCE STATEMENT Coordinated communications between brain regions are thought to be essential during post-learning periods for consolidation of memories. However, the role of specific neural circuit pathways in this process has been scarcely explored. Using a precise optogenetic inhibition of auditory input pathways, either thalamic or cortical or both, to the LA during post-training periods, we here show that thalamic input is required for consolidation of both recent and remote fear memory, whereas cortical input is crucial for consolidation of remote fear memory. These results reveal a dissociated role of auditory input pathways to the LA for consolidation of long-term fear memory.


Assuntos
Córtex Auditivo/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Consolidação da Memória/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Animais , Medo/fisiologia , Feminino , Masculino , Memória de Longo Prazo/fisiologia , Camundongos
4.
Biochem Biophys Res Commun ; 584: 39-45, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768080

RESUMO

The lateral amygdala (LA) is a main sensory input site from the cortical and thalamic regions. In turn, LA glutamatergic pyramidal neurons strongly project to the basal amygdala (BA). Although it is well known that auditory fear conditioning involves synaptic potentiation in the LA, it is not clear whether the LA-BA synaptic transmission is modified upon auditory fear conditioning. Here we found that high-frequency stimulation ex vivo resulted in long-term potentiation (LTP) with a concomitant enhancement of neurotransmitter release at LA-BA synapses. Auditory fear conditioning also led to the presynaptic facilitation at LA-BA synapses. Meanwhile, AMPA/NMDA current ratio was not changed upon fear conditioning, excluding the involvement of postsynaptic mechanism. Notably, fear conditioning occluded electrically induced ex vivo LTP in the LA-BA pathway, indicating that the conditioning and electrically induced LTP share common mechanisms. Our findings suggest that the presynaptic potentiation of LA-BA synapses may be involved in fear conditioning.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Neurotransmissores/metabolismo , Sinapses/fisiologia , Estimulação Acústica , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de AMPA/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
5.
Neurobiol Learn Mem ; 179: 107385, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33460789

RESUMO

We study the relations between different learning paradigms and enduring changes in excitatory synaptic transmission. Here we show that auditory fear conditioning (AFC), but not olfactory fear conditioning (OFC) training, led to enduring enhancement in AMPA-mediated miniature EPSCs (mEPSCs). Moreover, olfactory unpaired training led to a stable significant reduction in excitatory synaptic transmission. However, olfactory discrimination learning (OD) did not modulate postsynaptic AMPA-mediated mEPSCs in LA. The p21-activated kinase (PAK) activity, previously shown to have a key role in maintaining persistent long-lasting enhancement in synaptic inhibition after OFC, has an opposing effect on excitatory synaptic transmission. PAK maintained the level of excitatory synaptic transmission in the amygdala in all experimental groups, except in neurons in the OFC trained rats. PAK also maintained excitatory synaptic transmission in all neurons of auditory fear conditioning and naïve training groups except in neurons of the auditory safety learning. Safety learning was previously shown in our study to enhance synaptic inhibition. We thus suggest that PAK maintains inhibitory synaptic transmission in a learning-dependent manner and on the other hand affects excitatory synaptic transmission only in groups where learning has not affected inhibitory transmission. Thus, PAK controls learning-induced changes in the excitation/inhibition balance.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Condicionamento Clássico/fisiologia , Aprendizagem por Discriminação/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo , Quinases Ativadas por p21/metabolismo , Estimulação Acústica , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Masculino , Inibição Neural/fisiologia , Odorantes , Estimulação Física , Ratos , Transmissão Sináptica/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(45): 18315-20, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24151334

RESUMO

Long-lasting changes in synaptic connections induced by relevant experiences are believed to represent the physical correlate of memories. Here, we combined chronic in vivo two-photon imaging of dendritic spines with auditory-cued classical conditioning to test if the formation of a fear memory is associated with structural changes of synapses in the mouse auditory cortex. We find that paired conditioning and unpaired conditioning induce a transient increase in spine formation or spine elimination, respectively. A fraction of spines formed during paired conditioning persists and leaves a long-lasting trace in the network. Memory recall triggered by the reexposure of mice to the sound cue did not lead to changes in spine dynamics. Our findings provide a synaptic mechanism for plasticity in sound responses of auditory cortex neurons induced by auditory-cued fear conditioning; they also show that retrieval of an auditory fear memory does not lead to a recapitulation of structural plasticity in the auditory cortex as observed during initial memory consolidation.


Assuntos
Córtex Auditivo/fisiologia , Espinhas Dendríticas/fisiologia , Memória/fisiologia , Rememoração Mental/fisiologia , Sinapses/fisiologia , Análise de Variância , Animais , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Masculino , Camundongos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase
7.
Neurobiol Learn Mem ; 113: 109-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24525224

RESUMO

Research in humans has highlighted the importance of the amygdala for transient modulation of cortical areas for enhanced processing of emotional stimuli. However, non-human animal data has shown that amygdala dependent threat (fear) learning can also lead to long lasting changes in cortical sensitivity, persisting even after extinction of fear responses. The neural mechanisms of long-lasting traces of such conditioning in humans have not yet been explored. We used functional magnetic resonance imaging (fMRI) and assessed skin conductance responses (SCR) during threat acquisition, extinction learning and extinction retrieval. We provide evidence of lasting cortical plasticity in the human brain following threat extinction and show that enhanced blood oxygen level-dependent (BOLD) signal to the learned threat stimulus in the auditory association cortex is resistant to extinction. These findings point to a parallel avenue by which cortical processing of potentially dangerous stimuli can be long lasting, even when immediate threat and the associated amygdala modulation have subsided.


Assuntos
Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Tonsila do Cerebelo/fisiologia , Feminino , Resposta Galvânica da Pele/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Plasticidade Neuronal/fisiologia , Adulto Jovem
8.
Curr Protoc ; 4(5): e1040, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713136

RESUMO

In rodents, the first weeks of postnatal life feature remarkable changes in fear memory acquisition, retention, extinction, and discrimination. Early development is also marked by profound changes in brain circuits underlying fear memory processing, with heightened sensitivity to environmental influences and stress, providing a powerful model to study the intersection between brain structure, function, and the impacts of stress. Nevertheless, difficulties related to breeding and housing young rodents, preweaning manipulations, and potential increased variability within that population pose considerable challenges to developmental fear research. Here we discuss several factors that may promote variability in studies examining fear conditioning in young rodents and provide recommendations to increase replicability. We focus primarily on experimental conditions, design, and analysis of rodent fear data, with an emphasis on mouse studies. The convergence of anatomical, synaptic, physiological, and behavioral changes during early life may increase variability, but careful practice and transparency in reporting may improve rigor and consensus in the field. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.


Assuntos
Medo , Animais , Medo/psicologia , Medo/fisiologia , Camundongos , Reprodutibilidade dos Testes
9.
Heliyon ; 10(1): e23748, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205315

RESUMO

Objective: Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder that can develop after experiencing or witnessing a traumatic event. Exposure therapy is a common treatment for PTSD, but it has varying levels of efficacy depending on sex. In this study, we aimed to compare the sexual dimorphism in brain activation during the extinction of fear conditioning in male and female rats by detecting the c-fos levels in the whole brain. Methods: Thirty-two rats (Male: n = 16; Female: n = 16) were randomly separated into the extinction group as well as the non-extinction group, and fear conditioning was followed by extinction and non-extinction, respectively. Subsequently, brain sections from the sacrificed animal were performed immunofluorescence and the collected data were analyzed by repeated two-way ANOVAs as well as Pearson Correlation Coefficient. Results: Our findings showed that most brain areas activated during extinction were similar in both male and female rats, except for the reuniens thalamic nucleus and ventral hippocampi. Furthermore, we found differences in the correlation between c-fos activation levels and freezing behavior during extinction between male and female rats. Specifically, in male rats, c-fos activation in the anterior cingulate cortex was negatively correlated with the freezing level, while c-fos activation in the retrosplenial granular cortex was positively correlated with the freezing level; but in female rats did not exhibit any correlation between c-fos activation and freezing level. Finally, the functional connectivity analysis revealed differences in the neural networks involved in extinction learning between male and female rats. In male rats, the infralimbic cortex and insular cortex, anterior cingulate cortex and retrosplenial granular cortex, and dorsal dentate gyrus and dCA3 were strongly correlated after extinction. In female rats, prelimbic cortex and basolateral amygdala, insular cortex and dCA3, and anterior cingulate cortex and dCA1 were significantly correlated. Conclusion: These results suggest divergent neural networks involved in extinction learning in male and female rats and provide a clue for improving the clinical treatment of exposure therapy based on the sexual difference.

10.
Brain Behav ; 14(10): e70043, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39344296

RESUMO

PURPOSE: The infralimbic (IL) subregion of the medial prefrontal cortex (mPFC) regulates the extinction of conditioned fear memory. Glucocorticoid and gamma-aminobutyric acid (GABA) receptors are expressed in the mPFC and are also critical in fear extinction. This study investigated the possible interactive effects of the glucocorticoids and GABAergic system in the IL on the regulation of fear extinction. METHOD: The rats were trained using an auditory fear conditioning task during which they received three conditioned stimuli (tones, 30 s, 4 kHz, 80 dB), co-terminated with the three unconditioned stimuli (footshock, 0.8 mA, 1 s). Extinction testing was conducted over 3 days (Ext 1-3). Thirty minutes before the first extinction trial (Ext 1), the rats received bicuculline (BIC, 1 mg/kg/2 mL, intraperitoneal [i.p.]) as a GABAA receptor antagonist or CGP55845 (CGP, 0.1 mg/kg/2 ML, i.p.) as a GABAB receptor antagonist followed by systemic injection of corticosterone (CORT, 3 mg/kg/2 ML, i.p.). Furthermore, separate groups of rats received a bilateral intra-IL injection of BIC (100 ng/0.3 µL/side) or CGP (10 ng/0.3 µL/side) followed by a systemic injection of CORT (3 mg/kg/2 ML, i.p.) before the first extinction trial (Ext 1). The extracellular signal-regulated kinase (ERK1) and cAMP response element-binding (CREB) activity in the IL was examined by Western blot analysis after Ext 1. FINDING: The results indicated that systemic CORT injection facilitated fear extinction and increased the expression of ERK1 but not CREB in the IL. Both systemic and intra-IL co-injection of BIC or CGP blocked the effects of CORT on fear extinction and ERK1 expression. CONCLUSION: These findings suggest that glucocorticoids and the GABAergic system may modulate fear extinction through the ERK pathway in the IL.


Assuntos
Corticosterona , Extinção Psicológica , Medo , Córtex Pré-Frontal , Receptores de GABA-A , Receptores de GABA-B , Animais , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Masculino , Medo/efeitos dos fármacos , Medo/fisiologia , Corticosterona/farmacologia , Corticosterona/sangue , Corticosterona/administração & dosagem , Ratos , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Memória/efeitos dos fármacos , Memória/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Antagonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/administração & dosagem , Bicuculina/farmacologia , Bicuculina/administração & dosagem , Antagonistas de Receptores de GABA-B/farmacologia , Ratos Sprague-Dawley
11.
Behav Brain Res ; 445: 114378, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36868362

RESUMO

The Wnt signaling pathway plays a critical role in activity-dependent plasticity processes such as long-term potentiation, learning and memory. However, the role of the Wnt signaling pathway in adult extinction is still not well understood. In this study, we aimed to investigate the roles and mechanisms of the canonical Wnt/ß-catenin signaling pathway in the extinction of auditory fear conditioning (AFC) in adult mice. We found that AFC extinction training induced a significant decrease in p-GSK3ß and nuclear ß-catenin in the medial prefrontal cortex (mPFC). Micro-infusion of the canonical Wnt inhibitor Dkk1 into the mPFC before AFC extinction training facilitated AFC extinction, suggesting that the Wnt/ß-catenin pathway is involved in AFC extinction. To determine how Dkk1 affects canonical Wnt/ß-catenin signaling in AFC extinction, the protein levels of p-GSK3ß and ß-catenin were measured. We found that DKK1 produces a decrease in p-GSK3ß and ß-catenin. Moreover, we found that upregulating the Wnt/ß-catenin pathway using LiCl (2 µg/side) impaired AFC extinction. These findings may help us understand the role of canonical Wnt signaling pathway in memory extinction and suggest that appropriate manipulating the Wnt/ß-catenin signaling pathway might be a suitable way of therapeutically treating psychiatric disorders.


Assuntos
Via de Sinalização Wnt , beta Catenina , Camundongos , Animais , Masculino , Via de Sinalização Wnt/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , Medo
12.
Physiol Behav ; 265: 114156, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36918107

RESUMO

This study investigated the interactive effect of glucocorticoid and Gamma-aminobutyric acid (GABA) receptors in the Infralimbic (IL) cortex on fear extinction in rats' auditory fear conditioning task (AFC). Animals received 3 conditioning trial tones (conditioned stimulus, 30 s, 4 kHz, 80 dB) co-terminated with a footshock (unconditioned stimulus, 0.8 mA, 1 s). Extinction testing was conducted over 3 days (Ext 1-3) after conditioning. Intra-IL injection of corticosterone (CORT, 20 ng/0.3 µl/side) was performed 15 min before the first extinction trial (Ext 1) which attenuated auditory fear expression in subsequent extinction trials (Ext 1-3), demonstrating fear memory extinction enhancement. Co-injection of the GABAA agonist muscimol (250 ng/0.3 µl/side) or the GABAB agonist baclofen (250 ng/0.3 µl/side) 15 min before corticosterone, did not significantly affect the facilitative effects of corticosterone on fear extinction. However, co-injection of the GABAA antagonist bicuculline (BIC, 100 ng/0.3 µl/side) or the GABAB antagonist CGP35348 (CGP, 100 ng/0.3 µl/side) 15 min before corticosterone, blocked the facilitative effects of corticosterone on fear extinction. Moreover, extracellular signal-regulated kinase (ERK) and cAMP response element-binding (CREB) in the IL were examined by Western blotting analysis after the first extinction trial (Ext 1) in some groups. Intra-IL injection of corticosterone increased the ERK activity but not CREB. Co-injection of the bicuculline or CGP35348 blocked the enhancing effect of corticosterone on ERK expression in the IL. Glucocorticoid receptors (GRs) activation in the IL cortex by corticosterone increased ERK activity and facilitated fear extinction. GABAA or GABAB antagonists decreased ERK activity and inhibited corticosterone's effect. GRs and GABA receptors in the IL cortex jointly modulate the fear extinction processes via the ERK pathway. This pre-clinical animal study may highlight GRs and GABA interactions in the IL cortex modulating fear memory processes in fear-related disorders such as post-traumatic stress disorder (PTSD).


Assuntos
Corticosterona , Glucocorticoides , Ratos , Animais , Glucocorticoides/metabolismo , Corticosterona/farmacologia , Corticosterona/metabolismo , Extinção Psicológica/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/farmacologia , Receptores de GABA/metabolismo , Medo/fisiologia , Bicuculina/farmacologia , Bicuculina/metabolismo , Ratos Sprague-Dawley , Córtex Pré-Frontal/metabolismo , Receptores de Glucocorticoides/metabolismo , Ácido gama-Aminobutírico/metabolismo
13.
Neuron ; 111(4): 470-480.e5, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563678

RESUMO

Memories are thought to be stored in ensembles of neurons across multiple brain regions. However, whether and how these ensembles are coordinated at the time of learning remains largely unknown. Here, we combined CREB-mediated memory allocation with transsynaptic retrograde tracing to demonstrate that the allocation of aversive memories to a group of neurons in one brain region directly affects the allocation of interconnected neurons in upstream brain regions in a behavioral- and brain region-specific manner in mice. Our analysis suggests that this cross-regional recruitment of presynaptic neurons is initiated by downstream memory neurons through a retrograde mechanism. Together with statistical modeling, our results indicate that in addition to the anterograde flow of information between brain regions, the establishment of interconnected, brain-wide memory traces relies on a retrograde mechanism that coordinates memory ensembles at the time of learning.


Assuntos
Aprendizagem , Memória , Camundongos , Animais , Memória/fisiologia , Aprendizagem/fisiologia , Encéfalo/fisiologia , Neurônios/fisiologia
14.
Cell Rep ; 42(4): 112291, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36952344

RESUMO

Multiple brain regions are engaged in classical fear conditioning. Despite evidence for cerebellar involvement in fear conditioning, the mechanisms by which cerebellar outputs modulate fear learning and memory remain unclear. We identify a population of deep cerebellar nucleus (DCN) neurons with monosynaptic glutamatergic projections to the lateral parabrachial nucleus (lPBN) (DCN→lPBN neurons) in mice. While optogenetic suppression of DCN→lPBN neurons impairs auditory fear memory, activation of DCN→lPBN neurons elicits freezing behavior only after auditory fear conditioning. Moreover, auditory fear conditioning potentiates DCN-lPBN synapses, and subsequently, auditory cue activates lPBN neurons after fear conditioning. Furthermore, DCN→lPBN neuron activation can replace the auditory cue but not footshock in fear conditioning. These findings demonstrate that cerebellar nuclei modulate auditory fear conditioning via transmitting conditioned stimuli signals to the lPBN. Collectively, our findings suggest that the DCN-lPBN circuit is a part of neuronal substrates within interconnected brain regions underscoring auditory fear memory.


Assuntos
Núcleos Cerebelares , Núcleos Parabraquiais , Camundongos , Animais , Núcleos Cerebelares/fisiologia , Núcleos Parabraquiais/fisiologia , Neurônios/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia
15.
Neuropharmacology ; 202: 108844, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687711

RESUMO

Fear extinction is impaired in some psychiatric disorders. Any treatment that facilitates the extinction of fear is a way to advance the treatment of related psychiatric disorders. Recent studies have highlighted the role of oxytocin (OT) in fear extinction, but the endogenous release of OT during fear extinction in the dorsal hippocampal (dHPC) is not clear. We investigated the release of OT during fear extinction and the role of the HPC - medial prefrontal cortex (mPFC) circuit and BDNF in the effects of exogenous OT on auditory fear conditioning in male rats. We found that the release of endogenous OT in the dHPC is significantly increased during the fear extinction process as measured by the microdialysis method. Increased freezing response in the OT-treated rats compared to saline-treated rats showed that exogenous OT in the dHPC enhanced the fear extinction. Injection of BDNF antagonist (ANA-12) into the infralimbic (IL) blocked the effect of exogenous OT on the dHPC. Following OT injection, BDNF levels increased in the dHPC, ventral HPC, and IL cortex; but decreased in the prelimbic cortex (PL). Finally, OT microinjected into the dHPC significantly increased neural activity of pyramidal neurons of the CA1-vHPC and IL but decreased the neural activity in the PL cortex. Our findings strongly support that the dHPC endogenous OT plays a crucial role in enhancing fear extinction. It seems that the activation of the HPC-mPFC pathway, and consequently, the release of BDNF in the IL cortex mediates the enhancing effects of OT on fear extinction.


Assuntos
Estimulação Acústica/psicologia , Condicionamento Clássico/fisiologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Medo/efeitos dos fármacos , Medo/fisiologia , Hipocampo/metabolismo , Memória/efeitos dos fármacos , Memória/fisiologia , Ocitocina/fisiologia , Córtex Pré-Frontal/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Ocitocina/metabolismo , Ocitocina/farmacologia , Ratos Wistar
16.
Behav Brain Res ; 418: 113638, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695541

RESUMO

Disruptions in light/dark cycle have been associated with an altered ability to form and retrieve memory in human and animals. Animal studies have shown that chronic light deprivation disrupts the light/dark cycle and alters the neural connections that mediate hippocampal memory formation. In order to better understand how light deprivation affects the formation and retrieval of memory in adult rats, we examined the effect of total darkness on spatial and auditory fear learning and memory formation and BDNF/TRKB protein levels during the light and dark phases of the rat circadian cycle. Male Wistar rats (n = 60), were randomly divided into two main groups: normal rearing (NR, 12 h light/dark cycle for 3 weeks) and dark rearing (DR, kept in constant darkness for 3 weeks); and each of these groups had a "light (day)" and "dark (night)" sub-group. After 3 weeks, the Morris Water maze and auditory fear conditioning were used to assess spatial and fear memory acquisition and retrieval, respectively. BDNF and TRKB protein levels in the hippocampus of rats from the four sub-groups were measured by Western blot, at the completion of the 3 week constant darkness exposure and after the behavioral experiments. These studies revealed that DR for 3 weeks impaired spatial memory retrieval and enhanced extinction of auditory fear memory specifically during the light (day) phase. DR also eliminated the normal fluctuations in BDNF/TRKB levels observed in the hippocampus across the light/dark cycle.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ritmo Circadiano/fisiologia , Medo/fisiologia , Hipocampo/metabolismo , Fotoperíodo , Receptor trkB/metabolismo , Memória Espacial/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Wistar , Receptor trkB/genética
17.
Pharmacol Biochem Behav ; 203: 173131, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545214

RESUMO

Fear extinction is defined as decline in conditioned fear responses that occurs with repeated and non-reinforced exposure to a feared conditioned stimulus. Experimental evidence suggests that the extinction of fear memory requires the integration of the medial prefrontal cortex (mPFC); nevertheless, the role of its sub-regions in regulating the expression and extinction of auditory fear has been rarely addressed in literature. The present study examined the roles of the infra-limbic (IL) and pre-limbic (PL) regions of the mPFC in the expression and extinction of auditory fear by temporally deactivating these regions using lidocaine (10 µg/0.5 µl) before training male Wistar rats in auditory fear-conditioning tasks. The results showed increased freezing levels and impaired extinction through deactivating the IL rather than the PL cortex. Given the role of the dopaminergic pathways in regulating fear memory, this study also investigated the role of D2 receptors located in the IL cortex in fear extinction. Fear extinction was improved in an inverted U-shape pattern through the intra-IL infusion of 15.125, 31.25, 62.5, 125, 250 and 500 ng/0.5 µl of the D2 receptor antagonist sulpiride. In other words, the moderate doses, i.e. 31.25, 62.5, 125, 250 ng/0.5 µl, enhanced auditory fear extinction, whereas the lowest and highest doses, i.e. 15.125 and 500 ng/0.5 µl, were ineffective. These findings demonstrated the key roles of the IL cortex and its dopamine D2 receptors in regulating auditory fear in rats.


Assuntos
Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Lidocaína/administração & dosagem , Sistema Límbico/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulpirida/administração & dosagem , Animais , Condicionamento Clássico/efeitos dos fármacos , Sistema Límbico/efeitos dos fármacos , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar
18.
Behav Brain Res ; 396: 112896, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905811

RESUMO

Multiple sclerosis (MS) is associated with burdensome memory impairments and preclinical literature suggests that these impairments are linked to neuroinflammation. Previously, we have shown that toll-like receptor 4 (TLR4) antagonists, such as (+)-naltrexone [(+)-NTX], block neuropathic pain and associated spinal inflammation in rats. Here we extend these findings to first demonstrate that (+)-NTX blocks TLR2 in addition to TLR4. Additionally, we examined in two rat strains whether (+)-NTX could attenuate learning and memory disturbances and associated neuroinflammation using a low-dose experimental autoimmune encephalomyelitis (EAE) model of MS. EAE is the most commonly used experimental model for the human inflammatory demyelinating disease, MS. This low-dose model avoided motor impairments that would confound learning and memory measurements. Fourteen days later, daily subcutaneous (+)-NTX or saline injections began and continued throughout the study. Contextual and auditory-fear conditioning were conducted at day 21 to assess hippocampal and amygdalar function. With this low-dose model, EAE impaired long-term, but not short-term, contextual fear memory; both long-term and short-term auditory-cued fear memory were spared. This was associated with increased mRNA for hippocampal interleukin-1ß (IL-1ß), TLR2, TLR4, NLRP3, and IL-17 and elevated expression of the microglial marker Iba1 in CA1 and DG regions of the hippocampus, confirming the neuroinflammation observed in higher-dose EAE models. Importantly, (+)-NTX completely prevented the EAE-induced memory impairments and robustly attenuated the associated proinflammatory effects. These findings suggest that (+)-NTX may exert therapeutic effects on memory function by dampening the neuroinflammatory response in the hippocampus through blockade of TLR2/TLR4. This study suggests that TLR2 and TLR4 antagonists may be effective at treating MS-related memory deficits.


Assuntos
Encefalomielite Autoimune Experimental/complicações , Hipocampo/efeitos dos fármacos , Hipocampo/imunologia , Inflamação/etiologia , Inflamação/prevenção & controle , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Esclerose Múltipla/complicações , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Células Cultivadas , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Medo/efeitos dos fármacos , Medo/fisiologia , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/imunologia , Naltrexona/administração & dosagem , Antagonistas de Entorpecentes/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores
19.
Mol Brain ; 13(1): 112, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799906

RESUMO

A unique feature of fear memory is its persistence that is highly relevant to fear and anxiety-related mental disorders. Recurrent reactivation of neural representations acquired from a traumatic event is thought to contribute to the indelibility of fear memory. Given a well-established role of hippocampus for memory reactivation, hippocampus is likely involved in consolidation process of fear memory. However, evidence suggests that formation of fear memory to a discrete sensory cue is hippocampus-independent. Here, using a pharmacological reversible inactivation of dorsal hippocampus in auditory cued fear conditioning by local infusion of muscimol, we demonstrate in mice that hippocampus is critical for remote memory formation of learned fear to the discrete sensory cue. Muscimol infusion before conditioning did not affect formation of recent auditory fear memory as previously reported. Same muscimol infusion, however, impaired remote auditory fear memory. Muscimol infusion before remote test of auditory fear memory did not affect memory retrieval, indicating hippocampus is not a brain site for storage of remote cued fear memory. Moreover, memory reactivation enforced by re-exposure to the conditioned tone could compensate for hippocampal inactivation, as memory-reactivated mice showed normal remote auditory fear memory despite hippocampal inactivation. Our findings support that hippocampus may have a general role for consolidation of remote associative memory through reactivation of memory trace, giving an insight into how learned fear persists over time.


Assuntos
Sinais (Psicologia) , Medo/fisiologia , Hipocampo/fisiopatologia , Memória de Longo Prazo/fisiologia , Estimulação Acústica , Animais , Condicionamento Clássico/efeitos dos fármacos , Medo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Transtornos da Memória/fisiopatologia , Memória de Longo Prazo/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Muscimol/farmacologia
20.
Neurosci Lett ; 738: 135311, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818588

RESUMO

It has been shown that fear conditioning improves the steady-state evoked potentials driven by a long lasting amplitude modulated tone in the inferior colliculus. In this work we tested the hypothesis that the amygdala modulates this effect, since it plays a crucial role in assessing the biological relevance of environmental stimuli. We inhibited the basolateral nucleus of the amygdala of rats by injecting a GABAa receptor agonist (muscimol) before the recall test session of an auditory fear conditioning paradigm and recorded the evoked activity in the central nucleus of the inferior colliculus. According to our results, the treatment with muscimol decreased the expression of freezing behavior during the recall test session, but did not impair the entrainment of the evoked activity in the inferior colliculus induced by fear conditioning. We repeated the injection protocol with another group of rats but without pairing the tone to an aversive stimulus and observed that the inhibition of the basolateral amygdala enhances the stimulus-driven activity in the inferior colliculus regardless of the conditioning task. Our findings suggest that the basolateral amygdala exerts a tonic modulation over the encoding of sensory information at the early stages of the sensory pathway.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Potenciais Evocados/fisiologia , Medo/fisiologia , Colículos Inferiores/fisiologia , Estimulação Acústica , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Potenciais Evocados/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Colículos Inferiores/efeitos dos fármacos , Masculino , Muscimol/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA