RESUMO
Vibrio cholerae uses a quorum-sensing (QS) system composed of the autoinducer 3,5-dimethylpyrazin-2-ol (DPO) and receptor VqmA (VqmAVc), which together repress genes for virulence and biofilm formation. vqmA genes exist in Vibrio and in one vibriophage, VP882. Phage-encoded VqmA (VqmAPhage) binds to host-produced DPO, launching the phage lysis program via an antirepressor that inactivates the phage repressor by sequestration. The antirepressor interferes with repressors from related phages. Like phage VP882, these phages encode DNA-binding proteins and partner antirepressors, suggesting that they, too, integrate host-derived information into their lysis-lysogeny decisions. VqmAPhage activates the host VqmAVc regulon, whereas VqmAVc cannot induce phage-mediated lysis, suggesting an asymmetry whereby the phage influences host QS while enacting its own lytic-lysogeny program without interference. We reprogram phages to activate lysis in response to user-defined cues. Our work shows that a phage, causing bacterial infections, and V. cholerae, causing human infections, rely on the same signal molecule for pathogenesis.
Assuntos
Lisogenia/fisiologia , Pirazóis/metabolismo , Percepção de Quorum/fisiologia , Bacteriófagos/metabolismo , Biofilmes , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Percepção de Quorum/genética , Vibrio/metabolismo , Vibrio cholerae/metabolismo , Vibrio cholerae/fisiologia , Virulência , Latência ViralRESUMO
Bacteria utilize small extracellular molecules to communicate in order to collectively coordinate their behaviors in response to the population density. Autoinducer-2 (AI-2), a universal molecule for both intra- and inter-species communication, is involved in the regulation of biofilm formation, virulence, motility, chemotaxis, and antibiotic resistance. While many studies have been devoted to understanding the biosynthesis and sensing of AI-2, very little information is available on its export. The protein TqsA from Escherichia coli, which belongs to the AI-2 exporter superfamily, has been shown to export AI-2. Here, we report the cryogenic electron microscopic structures of two AI-2 exporters (TqsA and YdiK) from E. coli at 3.35 Å and 2.80 Å resolutions, respectively. Our structures suggest that the AI-2 exporter exists as a homo-pentameric complex. In silico molecular docking and native mass spectrometry experiments were employed to demonstrate the interaction between AI-2 and TqsA, and the results highlight the functional importance of two helical hairpins in substrate binding. We propose that each monomer works as an independent functional unit utilizing an elevator-type transport mechanism.
Assuntos
Escherichia coli , Homosserina , Proteínas de Bactérias/química , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Homosserina/análogos & derivados , Homosserina/análise , Homosserina/metabolismo , Lactonas , Simulação de Acoplamento Molecular , Percepção de QuorumRESUMO
Legionella pneumophila is an environmental bacterium, which replicates in amoeba but also in macrophages, and causes a life-threatening pneumonia called Legionnaires' disease. The opportunistic pathogen employs the α-hydroxy-ketone compound Legionella autoinducer-1 (LAI-1) for intraspecies and interkingdom signaling. LAI-1 is produced by the autoinducer synthase Legionella quorum sensing A (LqsA), but it is not known, how LAI-1 is released by the pathogen. Here, we use a Vibrio cholerae luminescence reporter strain and liquid chromatography-tandem mass spectrometry to detect bacteria-produced and synthetic LAI-1. Ectopic production of LqsA in Escherichia coli generated LAI-1, which partitions to outer membrane vesicles (OMVs) and increases OMV size. These E. coli OMVs trigger luminescence of the V. cholerae reporter strain and inhibit the migration of Dictyostelium discoideum amoeba. Overexpression of lqsA in L.pneumophila under the control of strong stationary phase promoters (PflaA or P6SRNA), but not under control of its endogenous promoter (PlqsA), produces LAI-1, which is detected in purified OMVs. These L. pneumophila OMVs trigger luminescence of the Vibrio reporter strain and inhibit D. discoideum migration. L. pneumophila OMVs are smaller upon overexpression of lqsA or upon addition of LAI-1 to growing bacteria, and therefore, LqsA affects OMV production. The overexpression of lqsA but not a catalytically inactive mutant promotes intracellular replication of L. pneumophila in macrophages, indicating that intracellularly produced LA1-1 modulates the interaction in favor of the pathogen. Taken together, we provide evidence that L. pneumophila LAI-1 is secreted through OMVs and promotes interbacterial communication and interactions with eukaryotic host cells.
Assuntos
Legionella pneumophila , Percepção de Quorum , Humanos , Proteínas de Bactérias/genética , Dictyostelium , Escherichia coli , Legionella , Legionella pneumophila/fisiologia , Doença dos Legionários/microbiologiaRESUMO
Vibrio parahaemolyticus is a significant food-borne pathogen that is found in diverse aquatic habitats. Quorum sensing (QS), a signaling system for cell-cell communication, plays an important role in V. parahaemolyticus persistence. We characterized the function of three V. parahaemolyticus QS signal synthases, CqsAvp , LuxMvp , and LuxSvp , and show that they are essential to activate QS and regulate swarming. We found that CqsAvp , LuxMvp , and LuxSvp activate a QS bioluminescence reporter through OpaR. However, V. parahaemolyticus exhibits swarming defects in the absence of CqsAvp , LuxMvp , and LuxSvp , but not OpaR. The swarming defect of this synthase mutant (termed Δ3AI) was recovered by overexpressing either LuxOvp D47A , a mimic of dephosphorylated LuxOvp mutant, or the scrABC operon. CqsAvp , LuxMvp , and LuxSvp inhibit lateral flagellar (laf) gene expression by inhibiting the phosphorylation of LuxOvp and the expression of scrABC. Phosphorylated LuxOvp enhances laf gene expression in a mechanism that involves modulating c-di-GMP levels. However, enhancing swarming requires phosphorylated and dephosphorylated LuxOvp which is regulated by the QS signals that are synthesized by CqsAvp , LuxMvp , and LuxSvp . The data presented here suggest an important strategy of swarming regulation by the integration of QS and c-di-GMP signaling pathways in V. parahaemolyticus.
Assuntos
Percepção de Quorum , Vibrio parahaemolyticus , Percepção de Quorum/genética , Vibrio parahaemolyticus/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Human health is seriously threatened by antibiotic-induced intestinal disorders. Herein, we aimed to determine the effects of Autoinducer-2 (AI-2) combined with Lactobacillus rhamnosus GG (LGG) on the intestinal barrier function of antibiotic-induced intestinal dysbiosis neonatal mice. METHODS: An antibiotic-induced intestinal dysbiosis neonatal mouse model was created using antibiotic cocktails, and the model mice were randomized into the control, AI-2, LGG, and LGG + AI-2 groups. Intestinal short-chain fatty acids and AI-2 concentrations were detected by mass spectrometry and chemiluminescence, respectively. The community composition of the gut microbiota was analyzed using 16S rDNA sequencing, and biofilm thickness and bacterial adhesion in the colon were assessed using scanning electron microscopy. Transcriptome RNA sequencing of intestinal tissues was performed, and the mRNA and protein levels of HCAR2 (hydroxycarboxylic acid receptor 2), claudin3, and claudin4 in intestinal tissues were determined using quantitative real-time reverse transcription PCR and western blotting. The levels of inflammatory factors in intestinal tissues were evaluated using enzyme-linked immunosorbent assays (ELISAs). D-ribose, an inhibitor of AI-2, was used to treat Caco-2 cells in vitro. RESULTS: Compared with the control, AI-2, and LGG groups, the LGG + AI-2 group showed increased levels of intestinal AI-2 and proportions of Firmicutes and Lacticaseibacillus, but a reduced fraction of Proteobacteria. Specifically, the LGG + AI-2 group had considerably more biofilms and LGG on the colon surface than those of other three groups. Meanwhile, the combination of AI-2 and LGG markedly increased the concentration of butyric acid and promoted Hcar2, claudin3 and claudin4 expression levels compared with supplementation with LGG or AI-2 alone. The ELISAs revealed a significantly higher tumor necrosis factor alpha (TNF-α) level in the control group than in the LGG and LGG + AI-2 groups, whereas the interleukin 10 (IL-10) level was significantly higher in the LGG + AI-2 group than in the other three groups. In vitro, D-ribose treatment dramatically suppressed the increased levels of Hcar2, claudin3, and claudin4 in Caco-2 cells induced by AI-2 + LGG. CONCLUSIONS: AI-2 promotes the colonization of LGG and biofilm formation to improve intestinal barrier function in an antibiotic-induced intestinal dysbiosis neonatal mouse model.
Assuntos
Lacticaseibacillus rhamnosus , Probióticos , Camundongos , Humanos , Animais , Animais Recém-Nascidos , Células CACO-2 , Função da Barreira Intestinal , Disbiose , Antibacterianos/farmacologia , Claudina-4/metabolismo , RiboseRESUMO
OBJECTIVE: The aim of this study was to investigate the association between autoinducer-2 (AI-2) of oral microbial flora and the alveolar bone destruction in periodontitis to determine if AI-2 may have the potential that monitor periodontitis and predict bone loss. BACKGROUND: Plaque biofilm was the initiating factor of periodontitis and the essential factor of periodontal tissue destruction. The formation of biofilms depended on the complex regulation of the quorum sensing (QS) system, in which bacteria could sense changes in surrounding bacterial density by secreting the autoinducer (AI) to regulate the corresponding physiological function. Most oral bacteria also communicated with each other to form biofilms administrating the QS system, which implied that the QS system of periodontal pathogens was related to periodontitis, but the specific relationship was unknown. METHOD: We collected the gingival crevicular fluid (GCF) samples and measured the concentration of AI-2 in samples using the Vibrio harveyi BB180 bioluminescent-reporter system. To explore the interaction between AI-2 and bone metabolism, we utilized AI-2 purified from Fusobacterium nucleatum to investigate the impact of F. nucleatum AI-2 on osteoclast differentiation. Moreover, we constructed murine periodontitis models and multi-species biofilm models to study the association between AI-2 and periodontal disease progression. RESULTS: The AI-2 concentration in GCF samples increased along with periodontal disease progression (p < .0001). F. nucleatum AI-2 promoted osteoclast differentiation in a dose-dependent manner. In the periodontitis mice model, the CEJ-ABC distance in the F. nucleatum AI-2 treatment group was higher than that in the simple ligation group (p < .01), and the maxilla of the mice in the group exhibited significantly lower BMD and BV/TV values (p < .05). CONCLUSIONS: We demonstrated that the AI-2 concentration varied with the alveolar bone destruction in periodontitis, and it may have the potential for screening periodontitis. F. nucleatum AI-2 promoted osteoclast differentiation in a dose-dependent manner and aggravated bone loss.
Assuntos
Perda do Osso Alveolar , Biofilmes , Fusobacterium nucleatum , Homosserina , Lactonas , Periodontite , Perda do Osso Alveolar/microbiologia , Perda do Osso Alveolar/metabolismo , Periodontite/microbiologia , Animais , Homosserina/análogos & derivados , Homosserina/metabolismo , Biofilmes/crescimento & desenvolvimento , Camundongos , Humanos , Líquido do Sulco Gengival/microbiologia , Líquido do Sulco Gengival/química , Masculino , Modelos Animais de Doenças , Osteoclastos , Percepção de Quorum , Feminino , Adulto , Diferenciação Celular , Pessoa de Meia-Idade , Microtomografia por Raio-XRESUMO
Virulence pathways in pathogenic bacteria are regulated by quorum sensing mechanisms, particularly biofilm formation through autoinducer (AI) production and sensing. In this study, the culture filtrate extracted from an edible mushroom, Agaricus subrutilescens, was fractionated to isolate a compound that inhibits biofilm formation. Four gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, Proteus mirabilis, and Enterobacter cloacae) and two gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) were used for the bioassay. The bioassay-guided chromatographic separations of the culture filtrate extract resulted in the isolation of the compound. Further, spectroscopic analyses revealed the identity of the compound as 2,2'-azoxybisbenzyl alcohol (ABA). The minimum inhibitory and sub-inhibitory concentrations of the compound were also determined. Azoxybisbenzyl alcohol was significantly effective in inhibiting biofilm formation in all tested bacteria, with half-maximal inhibitory concentrations of 3-11 µg/mL. Additionally, the bioactivity of ABA was confirmed through the bioassays for the inhibition of exopolysaccharide matrixes and AI activities.
Assuntos
Agaricus , Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Agaricus/química , Percepção de Quorum/efeitos dos fármacosRESUMO
An increase in the number of drug-resistant microbes is a major threat to human health. Bacterial drug resistance is mostly mediated by biofilm formation. In this study, the culture filtrate from the edible mushroom, Pleurotus ostreatus, was fractionated to isolate compounds that inhibit the biofilm formation of six pathogenic bacteria. Notably, we isolated compounds 16 using bioassay-guided chromatographic separations. Spectroscopic and X-ray diffraction analyses identified 1 as a novel fused bicyclic pyrone-furan, named pleuropyronine, whereas 2-6 were known polyketides. Pleuropyronine inhibited biofilm formation in four gram-negative bacteria, with IC50 values ranging from 5.4 to 8.7 µg/mL, whereas 2-6 exhibited IC50 values between 1.0 and 5.3 µg/mL against five bacteria. Additionally, pleuropyronine bioactivity was confirmed by the inhibition of exopolysaccharide and biofilm formation induced by C6-homoserine lactone. Thus, this may serve as a pioneering study on the pharmacological potential of isolated compounds, offering valuable insights for future research.
RESUMO
IMPORTANCE: Aeromonas veronii can adhere to host cells through different adherence factors including outer-membrane proteins (OMPs), lipopolysaccharide (LPS), and pili, but its adherence mechanisms are still unclear. Here, we evaluated the effect of autoinducer-2 (AI-2) on adherence of A. veronii and its regulation mechanism. After determination of the promotion effect of AI-2 on adherence, we investigated which adherence factor was regulated by AI-2, and the results show that AI-2 only limits the formation of pili. Among the four distinct pili systems, only the mannose-sensitive hemagglutinin (MSHA) type IV pili genes were significantly downregulated after deficiency of AI-2. MshE, an ATPase belonged to MSHA type IV pilin, was confirmed as c-di-GMP receptor, that can bind with c-di-GMP which is positively regulated by AI-2, and the increase of c-di-GMP can promote the expression of MSHA type IV pili genes and adherence of A. veronii. Therefore, this study confirms that c-di-GMP positively regulated by AI-2 binds with MshE, then increases the expression of MSHA pili genes, finally promoting adherence of A. veronii, suggesting a multilevel positive regulatory adhesion mechanism that is responsible for A. veronii adherence.
Assuntos
Aeromonas veronii , Hemaglutininas , Manose , Fímbrias Bacterianas/genéticaRESUMO
Staphylococcus aureus uses quorum sensing and nutrient availability to control the expression of agr-regulated virulence factors. Quorum sensing is mediated by autoinducing peptide (AIP), which at a high concentration reduces expression of surface attachment proteins (coa, fnbpA) and increases expression of exotoxins (lukS) and proteases (splA). Nutrient availability can be sensed through the saeS/saeR system. Low nutrients increase expression of saeR, which augments expression of coa and fnbpA, distinct from the activity of AIP. The formation of spatial structure, such as biofilms, can alter quorum sensing and nutrient acquisition. In natural environments, biofilms encounter forces that may alter their spatial structure. These forces may impact quorum sensing and/or nutrient acquisition and thus affect the expression of agr-regulated virulence factors. However, this has not been studied. We show that periodically disturbing biofilms composed of S. aureus using a physical force affected the expression of agr-regulated virulence factors. In nutrient-poor environments, disturbance increased the expression of coa, fnbpA, lukS, and splA. Disturbance in a nutrient-rich environment at low or high disturbance amplitudes moderately reduced expression of coa and fnbpA but increased expression of lukS and splA. Interestingly, at an intermediate amplitude, the overall expression of agr-regulated virulence factors was the lowest; expression of lukS and splA remained unchanged relative to an undisturbed biofilm, while expression of coa and fnbpA significantly decreased. We hypothesize that these changes are a result of disturbance-driven changes in access to AIP and nutrients. Our results may allow the identification of environments where virulence is enhanced, or reduced, owing to a disturbance. IMPORTANCE Bacteria, such as Staphylococcus aureus, integrate signals from the environment to regulate genes encoding virulence factors. These signals include those produced by quorum-sensing systems and nutrient availability. We show that disturbing the spatial organization of S. aureus populations can lead to changes in the expression of virulence factors, likely by altering the ways in which S. aureus detects these signals. Our work may allow us to identify environments that increase or reduce the expression of virulence factors in S. aureus.
Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Transativadores/genética , Transativadores/metabolismo , Biofilmes , Infecções Estafilocócicas/microbiologia , Percepção de Quorum , Peptídeos/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão GênicaRESUMO
Helcococcus kunzii is a commensal Gram-positive bacterial species recovered from the human skin microbiota and considered as an opportunistic pathogen. Although little is known about its clinical significance, its increased abundance has been reported in infected wounds, particularly in foot ulcers in persons with diabetes. This species is usually detected in mixed cultures from human specimens and frequently isolated with Staphylococcus aureus. Modulation of staphylococci virulence by H. kunzii has been shown in an infection model of Caenorhabditis elegans. The aim of this study was to compare the genomes of two H. kunzii strains isolated from foot ulcers -isolate H13 and H10 showing high or low impact on S. aureus virulence, respectively- and the H. kunzii ATCC51366 strain. Whole genome analyses revealed some differences between the two strains: length (2.06 Mb (H13) and 2.05 Mb (H10) bp), GC content (29.3% (H13) and 29.5% (H10)) and gene content (1,884 (H13) and 1,786 (H10) predicted genes). The core-proteome phylogenies within the genus characterised H. kunzii H13 and H10 as genetically similar to their ancestor. The main differences between the strains were mainly in sugar-associated transporters and various hypothetical proteins. Five targets were identified as potentially involved in S. aureus virulence modulation in both genomes: the two-component iron export system and three autoinducer-like proteins. Moreover, H13 strain harbours a prophage inserted in 1,261,110-1,295,549 (attL-attR), which is absent in H10 strain. The prophage PhiCD38_2 was previously reported for its ability to modulate secretion profile, reinforcing the autoinducer-like hypothesis. In the future, transcriptomics or metaproteomics approaches could be performed to better characterize the H13 strain and possibly identify the underlying mechanism for S. aureus virulence modulation.
Assuntos
Diabetes Mellitus , Pé Diabético , Infecções Estafilocócicas , Humanos , Pé Diabético/microbiologia , Staphylococcus aureus/genética , Infecções Estafilocócicas/microbiologia , GenômicaRESUMO
The oxylipin-dependent quorum-sensing system (ODS) of Pseudomonas aeruginosa relies on the production and sensing of two extracellular oxylipins, 10S-hydroxy-(8E)-octadecenoic acid (10-HOME) and 7S,10S-dihydroxy-(8E)-octadecenoic acid (7,10-DiHOME). Here, we implemented a genetic screen of P. aeruginosa strain PAO1 aimed to identify genes required for 10-HOME and 7,10-DiHOME production. Among the 14 genes identified, four encoded previously known components of the ODS and 10 encoded parts of the Xcp type II secretion system (T2SS). We subsequently created a clean xcpQ deletion mutant, which encodes the necessary outer membrane component of Xcp, and found it recapitulated the impaired functionality of the T2SS transposon mutants. Further studies showed that the ΔxcpQ mutant was unable to secrete the oxylipin synthase enzymes across the outer membrane. Specifically, immunoblotting for OdsA, which is responsible for the generation of 10-HOME from oleic acid, detected the enzyme in supernatants from wild-type PAO1 but not ΔxcpQ cultures. Likewise, chromatography of supernatants found that 10-HOME was not in supernatants collected from the ΔxcpQ mutant. Accordingly, diol synthase activity was increased in the periplasm of ΔxcpQ mutant consistent with a stoppage in its transport. Importantly, after exposure of the ΔxcpQ mutant to exogenous 10-HOME and 7,10-DiHOME, the ODS effector genes become active; thus, the sensing component of the ODS does not involve the T2SS. Finally, we observed that Xcp contributed to robust in vitro and in vivo biofilm formation in oleic acid availability- and ODS-dependent manner. Thus, T2SS-mediated transport of the oxylipin synthase enzymes to outside the bacterial cell is required for ODS functionality. IMPORTANCE We previously showed that the ODS of P. aeruginosa produces and responds to oxylipins derived from host oleic acid by enhancing biofilm formation and virulence. Here, we developed a genetic screen strategy to explore the molecular basis for oxylipins synthesis and detection. Unexpectedly, we found that the ODS autoinducer synthases cross the outer membrane using the Xcp type 2 secretion system (T2SS) of P. aeruginosa, and so the biosynthesis of oxylipins occurs extracellularly. T2SS promoted biofilm formation in the presence of oleic acid as a result of ODS activation. Our results identify two new T2SS secreted proteins in P. aeruginosa and reveal a new way by which this important opportunistic pathogen interacts with the host environment.
Assuntos
Sistemas de Secreção Tipo II , Proteínas de Bactérias/metabolismo , Ácido Oleico/metabolismo , Oxilipinas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo II/metabolismoRESUMO
Even though Campylobacter spp. are known to be fastidious organisms, they can survive within the natural environment. One mechanism to withstand unfavourable conditions is the formation of biofilms, a multicellular structure composed of different bacterial and other microbial species which are embedded in an extracellular matrix. High oxygen levels, low substrate concentrations and the presence of external DNA stimulate the biofilm formation by C. jejuni. These external factors trigger internal adaptation processes, e.g. via regulating the expression of genes encoding proteins required for surface structure formation, as well as motility, stress response and antimicrobial resistance. Known genes impacting biofilm formation will be summarized in this review. The formation of biofilms as well as the expression of virulence genes is often regulated in a cell density depending manner by quorum sensing, which is mediated via small signalling molecules termed autoinducers. Even though quorum sensing mechanisms of other bacteria are well understood, knowledge on the role of these mechanisms in C. jejuni biofilm formation is still scarce. The LuxS enzyme involved in generation of autoinducer-2 is present in C. jejuni, but autoinducer receptors have not been identified so far. Phenotypes of C. jejuni strains lacking a functional luxS like reduced growth, motility, oxygen stress tolerance, biofilm formation, adhesion, invasion and colonization are also summarized within this chapter. However, these phenotypes are highly variable in distinct C. jejuni strains and depend on the culture conditions applied.
Assuntos
Campylobacter , Percepção de Quorum , Proteínas de Bactérias/genética , Biofilmes , VirulênciaRESUMO
The ubiquitous signaling molecule autoinducer 2 (AI-2) is involved in intra- and interspecies communication, most notably between Gram-negative and Gram-positive bacteria. AI-2 accumulates during the exponential phase of the Escherichia coli (E. coli) monoculture and then rapidly decreases upon entry into the stationary phase. However, deleting both the genes encoding AI-2 synthase (LuxS) and the lsr operon regulator (LsrR) in the E. coli genome causes impaired AI-2 production and continuous AI-2 scavenging from the environment. This genetically-engineered E. coli mutant capable of quenching AI-2 quorum sensing (QS) system was utilized to evaluate the effect of AI-2 quenching on the anaerobic digestion of waste activated sludge (WAS) because the role of QS system via AI-2 in the process remains obscure. In this study, E. coli ∆luxS lsrR mutant cells were microencapsulated in sodium alginate beads and incubated with WAS anaerobically. After 15 days of anaerobic fermentation, the WAS containing double mutant cells produced significantly more methane than that of the parent E. coli cells. AI-2 quenching occurred concurrently with a shift of microbial communities that contribute to increasing acetate consumption by the Methanosarcina spp. resulting in an increase in methane production. KEY POINTS: ⢠Impact of autoinducer 2 quenching in complex bacterial populations were determined. ⢠Key microorganisms contributing to the increase of methane in WAS anaerobic digestion were found. ⢠The AI-2 quenching is a potential regulatory in wastewater treatment and bioenergy research.
Assuntos
Percepção de Quorum , Esgotos , Anaerobiose , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Homosserina/análogos & derivados , Homosserina/metabolismo , Lactonas , Metano , Esgotos/microbiologiaRESUMO
Probiotics have the potential to be used in the prevention of Clostridioides difficile infection (CDI). In this study, selenium (Se)-enriched Bifidobacterium breve YH68-Se was obtained under optimal culture conditions with single-factor and response surface optimization. The overall environmental resistance of YH68-Se was superior to that of the parental strain YH68, mainly reflected in the substantial improvement of antioxidant activity and gastrointestinal tolerance. YH68-Se dramatically inhibited C. difficile growth, spore, biofilm, toxin production, and virulence gene expression, rapidly disrupted C. difficile cell membrane permeability and integrity, and altered the membrane proton motive force (PMF), induced a large outflow of intracellular substances and eventually caused bacterial death. The main factor inducing this process originated from the lactic acid (LD) in YH68-Se. In addition, the LD production of YH68 increased with increasing selenite concentration and was accompanied by enhanced activities of thioredoxin reductase (TrxR), glutathione peroxidase (GSH-Px), and increased concentration of autoinducer-2 (AI-2), which may be the crucial factors contributing to the outstanding probiotic properties of YH68-Se and their potent antagonism of C. difficile. KEY POINTS: ⢠Compared with the parental strain B. breve YH68, the environmental resistance of YH68-Se was improved. ⢠YH68-Se was able to produce more lactic acid, which suppressed the important physiological activities of C. difficile and rapidly disrupted their cell membrane structures. ⢠Sodium selenite in the suitable concentration range gradually increases the yield of lactic acid and phenylacetic acid, increased the concentration of autoinducer-2, and enhanced the activities of antioxidant enzymes TrxR and GSH-Px in YH68.
Assuntos
Bifidobacterium breve , Clostridioides difficile , Selênio , Antioxidantes , Bifidobacterium breve/metabolismo , Clostridioides , Glutationa Peroxidase/metabolismo , Ácido Láctico , Selênio/metabolismoRESUMO
Boron is an essential element for autoinducer-2 (AI-2) synthesis of quorum sensing (QS) system, which affects bacterial collective behavior. As a living biocatalyst, biofilms can stably catalyze the activity of intracellular enzymes. However, it is unclear how boron affects biofilm formation in E. coli, particularly recombinant E. coli with intracellular enzymes. This study screened different boron derivatives to explore their effect on biofilm formation. The stress response of biofilm formation to boron was illuminated by analyzing AI-2 activity, extracellular polymeric substances (EPS) composition, gene expression levels, etc. Results showed that boron derivatives promote AI-2 activity in QS system. After treatment with H3BO3 (0.6 mM), the AI-2 activity increased by 65.99%, while boron derivatives increased the biomass biofilms in the order H3BO3 > NaBO2 > Na2B4O7 > NaBO3. Moreover, treatment with H3BO3 (0.6 mM) increased biomass by 88.54%. Meanwhile, AI-2 activity had a linear correlation with polysaccharides and protein of EPS at 0−0.6 mM H3BO3 and NaBO2 (R2 > 0.8). Furthermore, H3BO3 upregulated the expression levels of biofilm formation genes, quorum sensing genes, and flagellar movement genes. These findings demonstrated that boron promoted biofilm formation by upregulating the expression levels of biofilm-related genes, improving the QS system AI-2 activity, and increasing EPS secretion in E. coli.
Assuntos
Escherichia coli , Percepção de Quorum , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Boro , Escherichia coli/metabolismo , Homosserina/farmacologia , Lactonas/metabolismo , Lactonas/farmacologia , Percepção de Quorum/genéticaRESUMO
Quorum sensing is a bacterial communication process whereby bacteria produce, release, and detect extracellular signaling molecules called autoinducers to coordinate collective behaviors. In the pathogen Vibrio cholerae, the quorum-sensing autoinducer 3,5-dimethyl-pyrazin-2-ol (DPO) binds the receptor and transcription factor VqmA. The DPO-VqmA complex activates transcription of vqmR, encoding the VqmR small RNA, which represses genes required for biofilm formation and virulence factor production. Here, we show that VqmA is soluble and properly folded and activates basal-level transcription of its target vqmR in the absence of DPO. VqmA transcriptional activity is increased in response to increasing concentrations of DPO, allowing VqmA to drive the V. cholerae quorum-sensing transition at high cell densities. We solved the DPO-VqmA crystal structure to 2.0 Å resolution and compared it with existing structures to understand the conformational changes VqmA undergoes upon DNA binding. Analysis of DPO analogs showed that a hydroxyl or carbonyl group at the 2'-position is critical for binding to VqmA. The proposed DPO precursor, a linear molecule, N-alanyl-aminoacetone (Ala-AA), also bound and activated VqmA. Results from site-directed mutagenesis and competitive ligand-binding analyses revealed that DPO and Ala-AA occupy the same binding site. In summary, our structure-function analysis identifies key features required for VqmA activation and DNA binding and establishes that, whereas VqmA binds two different ligands, VqmA does not require a bound ligand for folding or basal transcriptional activity. However, bound ligand is required for maximal activity.
Assuntos
Proteínas de Bactérias/metabolismo , Pirazóis/metabolismo , Percepção de Quorum , Transdução de Sinais , Fatores de Transcrição/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Pirazóis/química , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/genéticaRESUMO
The water-borne bacterium Legionella pneumophila replicates in environmental protozoa and upon inhalation destroys alveolar macrophages, thus causing a potentially fatal pneumonia termed 'Legionnaires' disease'. L. pneumophila employs the Legionella quorum sensing (Lqs) system to control its life cycle, pathogen-host cell interactions, motility and natural competence. Signaling through the Lqs system occurs through the α-hydroxyketone compound Legionella autoinducer-1 (LAI-1) and converges on the prototypic response regulator LqsR, which dimerizes upon phosphorylation of the conserved aspartate, D108 . In this study, we determine the high-resolution structure of monomeric LqsR. The structure reveals a receiver domain adopting a canonical (ßα)5 fold, which is connected through an additional sixth helix and an extended α5-helix to a novel output domain. The two domains delineate a mainly positively charged groove, and the output domain adopts a five-stranded antiparallel ß-sheet fold similar to nucleotide-binding proteins. Structure-based mutagenesis identified amino acids critical for LqsR phosphorylation and dimerization. Upon phosphorylation, the LqsRD172A and LqsRD302N/E303Q mutant proteins dimerized even more readily than wild-type LqsR, and no evidence for semi-phosphorylated heterodimers was obtained. Taken together, the high-resolution structure of LqsR reveals functionally relevant amino acid residues implicated in signal transduction of the prototypic response regulator.
Assuntos
Legionella pneumophila/metabolismo , Percepção de Quorum/fisiologia , Elementos de Resposta/genética , Elementos de Resposta/fisiologia , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Escherichia coli/genética , Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Legionella pneumophila/genética , Locomoção/fisiologia , Fosforilação/fisiologia , Dobramento de Proteína , Estrutura Terciária de ProteínaRESUMO
Biofilms are structured microbial communities of single or multiple populations in which microbial cells adhere to a surface and get embedded in extracellular polymeric substances (EPS). This review attempts to explain biofilm architecture, development phases, and forces that drive bacteria to promote biofilm mode of growth. Bacterial chemical communication, also known as Quorum sensing (QS), which involves the production, detection, and response to small molecules called autoinducers, is highlighted. The review also provides a brief outline of interspecies and intraspecies cell-cell communication. Additionally, we have performed docking studies using Discovery Studio 4.0, which has enabled our understanding of the prominent interactions between autoinducers and their receptors in different bacterial species while also scoring their interaction energies. Receptors, such as LuxN (Phosphoreceiver domain and RecA domain), LuxP, and LuxR, interacted with their ligands (AI-1, AI-2, and AHL) with a CDocker interaction energy of - 31.6083 kcal/mole; - 34.5821 kcal/mole, - 48.2226 kcal/mole and - 41.5885 kcal/mole, respectively. Since biofilms are ideal for the remediation of contaminants due to their high microbial biomass and their potential to immobilize pollutants, this article also provides an overview of biofilm-mediated bioremediation.
Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Biofilmes , Ligantes , Percepção de Quorum/fisiologia , Simulação por ComputadorRESUMO
BACKGROUND: Eradication of Helicobacter pylori infection is the most direct and effective way for preventing gastric cancer. Lactic acid bacteria are considered as alternative therapeutic agents against H. pylori infection. METHODS: Effects of Lactobacillus rhamnosus JB3 (LR-JB3) on the virulence gene expression of H. pylori and infection-induced cellular responses of AGS cells were investigated by co-cultivating infected AGS cells with different multiplicity of infections (MOIs) of LR-JB3. RESULTS: LR-JB3, specifically at a MOI of 25, suppressed the association ability of H. pylori and its induced IL-8 levels, as well as the mRNA levels of vacA, sabA, and fucT of H. pylori, infection-induced Lewis (Le)x antigen and Toll-like receptor 4 (TLR4) expressions in AGS cells. However, the apoptosis mediated by infection was inhibited by LR-JB3 in a dose-dependent manner. In addition, autoinducer (AI)-2 was observed to have increased the association ability and fucT expression of H. pylori, and Lex antigen and TLR4 expression of AGS cells. Interestingly, an unknown bioactive cue was hypothesized to have been secreted from LR-JB3 at a MOI of 25 to act as an antagonist of AI-2. CONCLUSIONS: LR-JB3 possesses various means to interfere with H. pylori pathogenesis and infection-induced cellular responses of AGS cells to fight against infection.