Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Virus Genes ; 58(6): 589-593, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183048

RESUMO

Hepatitis E virus (HEV) infection has a global distribution with diverse hosts, including mammals and avians. In this study, an avian Hepatitis E virus (aHEV) strain with a high mortality rate of about 30%, designated as SDXT20, was obtained from the liver of 30-week-old Hubbard chickens with severe hepatosplenomegaly in 2020 in Eastern China and HEV was proved to be the only pathogen by next-generation sequencing. Its complete genome, which encodes three open reading frames (ORFs), is 6649 nt in length. ORF1-3 encodes three proteins with lengths of 1532 aa, 606 aa, and 82 aa, respectively, and ORF2 and ORF3 overlap with each other. BLAST-based similarity analysis of the complete viral genome demonstrated that SDXT20 had merely 80.5-92.2% similarity with avian Avihepevirus magniiecur strains and 50.4%-54.8% lower similarity with Paslahepevirus balayani, Rocahepevirus ratti, and Chirohepevirus eptesici species. Further genetic evolution analysis of the complete genome and ORF2 revealed that the isolate was genetically distinct from known aHEVs, and it belonged to a novel genetically distinct aHEV. This study provides data for further analysis of the multi-host and cross-host genetic evolution of HEVs.


Assuntos
Vírus da Hepatite E , Hepatite E , Hepevirus , Animais , Hepevirus/genética , Galinhas , Vírus da Hepatite E/genética , Hepatite E/veterinária , Genoma Viral/genética , Fases de Leitura Aberta/genética , China , Mamíferos
2.
BMC Vet Res ; 18(1): 56, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078465

RESUMO

BACKGROUND: Avian hepatitis E virus (HEV) is the pathogenic agent of big liver and spleen disease (BLS) and of hepatitis-splenomegaly syndrome (HSS) in chickens, which have caused economic losses to the poultry industry in China. In this study, 18 samples of BLS chickens were collected to reveal the molecular epidemiological characteristics of avian HEV in the province of Shandong, China. RESULTS: Gross and microscopic lesions of clinical samples were observed; then, virology detection and genetic analysis of avian HEV were performed. The results showed that there was significant swelling and rupture in the liver and that the spleen was enlarged. Microscopic lesions demonstrated obvious hemorrhage in the liver, with infiltration of heterophilic granulocytes, lymphocytes, and macrophages, as well as the reduction of lymphocytes in the spleen. Eleven of the 18 samples were positive for avian HEV, with a positive rate of 61.11%. More importantly, all avian HEV-positive samples were mixed infections: among these, the mixed infections of avian HEV and chicken infectious anemia virus (CIAV) and avian HEV and fowl adenovirus (FAdV) were the most common. Furthermore, the genetic evolution analysis showed that all avian HEV strains obtained here did not belong to the reported 4 genotypes, thus constituting a potential novel genotype. CONCLUSIONS: These results of this study further enrich the epidemiological data on avian HEV in Shandong, prove the genetic diversity of avian HEV in China, and uncover the complex mixed infections of avian HEV clinical samples.


Assuntos
Coinfecção , Hepatite E , Hepatite Viral Animal , Doenças das Aves Domésticas , Animais , Galinhas , China/epidemiologia , Coinfecção/veterinária , Hepatite E/epidemiologia , Hepatite E/veterinária , Hepatite Viral Animal/diagnóstico , Hepatite Viral Animal/epidemiologia , Hepevirus/genética , Epidemiologia Molecular , Filogenia , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/epidemiologia
3.
BMC Vet Res ; 15(1): 131, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060564

RESUMO

BACKGROUND: Hepatitis E virus (HEV) is one of most important zoonotic viruses, and it can infect a wide range of host species. Avian HEV has been identified as the aetiological agent of big liver and spleen disease or hepatitis-splenomegaly syndrome in chickens. HEV infection is common among chicken flocks in China, and there are currently no practical measures for preventing the spread of the disease. The predominant avian HEV genotype circulating in China have been identified as genotype 3 strains, although some novel genotypes have also been identified from chicken flocks in China. RESULTS: In this study, we used a meta-transcriptomics approach to identify a new subtype of genotype 3 avian HEV in broiler chickens at a poultry farm located in Shenzhen, Guangdong Province, China. The complete genome sequence of the avian HEV, designated CaHEV-GDSZ01, is 6655-nt long, including a 5' UTR of 24 nt and a 3' UTR of 125 nt (excluding the poly(A) tail), and contains three open reading frames (ORFs). Sequence analysis indicated that the complete ORF1 (4599 nt/1532 aa), ORF2 (1821 nt/606 aa) and ORF3 (264 nt/87 aa) of CaHEV-GDSZ01 share the highest nucleotide sequence identity (85.8, 86.7 and 95.8%, respectively) with the corresponding ORFs of genotype 3 avian HEV. Phylogenetic analyses further demonstrated that the avian HEV identified in this study is a new subtype of genotype 3 avian HEV. CONCLUSIONS: Our results demonstrate that a new subtype of genotype 3 avian HEV is endemic in Guangdong, China, and could cause high mortality in infected chickens. This study also provides full genomic data for better understanding the evolutionary relationships of avian HEV circulating in China. Altogether, the results presented in this study suggest that more attention should be paid to avian HEV and its potential disease manifestation.


Assuntos
Perfilação da Expressão Gênica/veterinária , Hepatite Viral Animal/virologia , Hepevirus/genética , Doenças das Aves Domésticas/virologia , Animais , Galinhas , China/epidemiologia , Genótipo , Hepatite Viral Animal/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/mortalidade , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia
4.
J Gen Virol ; 98(11): 2645-2646, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29022866

RESUMO

The family Hepeviridae includes enterically transmitted small non-enveloped positive-sense RNA viruses. It includes the genera Piscihepevirus, whose members infect fish, and Orthohepevirus, whose members infect mammals and birds. Members of the genus Orthohepevirus include hepatitis E virus, which is responsible for self-limiting acute hepatitis in humans and several mammalian species; the infection may become chronic in immunocompromised individuals. Extrahepatic manifestations of Guillain-Barré syndrome, neuralgic amyotrophy, glomerulonephritis and pancreatitis have been described in humans. Avian hepatitis E virus causes hepatitis-splenomegaly syndrome in chickens. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Hepeviridae, which is available at www.ictv.global/report/hepeviridae.


Assuntos
Hepatite Viral Animal/virologia , Hepatite Viral Humana/virologia , Hepevirus/classificação , Animais , Humanos
5.
Virus Genes ; 52(5): 738-42, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27164843

RESUMO

A new avian hepatitis E virus (HEV) GI-B was identified in broiler breeders with hematomas, liver rupture, and splenomegaly, along with excessive abdominal fat, in Korea. Previously, genotype 1 had been identified in avian HEV strains in Korea. Complete sequence analyses revealed that the new avian HEV clustered in genotype 2, which has been identified in the USA and Spain; the GI-B isolate was closely related to the USA prototype avian HEV isolated from a chicken with hepatitis-splenomegaly syndrome. Although some HEV genotypes show a geographical distribution pattern, the discovery of genotype 2 in addition to genotype 1 in Korea suggests that the geographical grouping might be reconsidered. These findings have important implications for understanding the global epidemiology and spread of avian HEV.


Assuntos
Galinhas/virologia , Hepatite E/virologia , Hepatite Viral Animal/virologia , Hepevirus/genética , Doenças das Aves Domésticas/virologia , Esplenomegalia/virologia , Sequência de Aminoácidos , Animais , Genótipo , Filogenia , República da Coreia , Espanha
6.
BMC Vet Res ; 12(1): 261, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27876045

RESUMO

BACKGROUND: From 2014 to 2015 in China, many broiler breeder and layer hen flocks exhibited a decrease in egg production and some chickens developed hepatitis syndrome including hepatomegaly, hepatic necrosis and hemorrhage. Avian hepatitis E virus (HEV) and avian leucosis virus subgroup J (ALV-J) both cause decreasing in egg production, hepatomegaly and hepatic hemorrhage in broiler breeder and layer hens. In the study, the seroprevalence of avian HEV and ALV-J in these flocks emerging the disease from Shandong and Shaanxi provinces were investigated. RESULTS: A total of 1995 serum samples were collected from 14 flocks with hepatitis syndrome in Shandong and Shaanxi provinces, China. Antibodies against avian HEV and ALV-J in these serum samples were detected using iELISAs. The seroprevalence of anti-avian HEV antibodies (35.09%) was significantly higher than that of anti-ALV-J antibodies (2.16%) (p = 0.00). Moreover, the 43 serum samples positive for anti-ALV-J antibodies were all also positive for anti-avian HEV antibodies. In a comparison of both provinces, Shandong chickens exhibited a significantly higher seroprevalence of anti-avian HEV antibodies (42.16%) than Shaanxi chickens (26%) (p = 0.00). In addition, the detection of avian HEV RNA and ALV-J cDNA in the liver samples from the flocks of two provinces also showed the same results of the seroprevalence. CONCLUSIONS: In the present study, the results showed that avian HEV infection is widely prevalent and ALV-J infection is endemic in the flocks with hepatitis syndrome from Shandong and Shaanxi provinces of China. These results suggested that avian HEV infection may be the major cause of increased egg drop and hepatitis syndrome observed during the last 2 years in China. These results should be useful to guide development of prevention and control measures to control the diseases within chicken flocks in China.


Assuntos
Leucose Aviária/epidemiologia , Hepatite E/veterinária , Doenças das Aves Domésticas/epidemiologia , Animais , Anticorpos Antivirais/sangue , Leucose Aviária/patologia , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/fisiologia , Galinhas , China/epidemiologia , DNA Complementar/análise , Ensaio de Imunoadsorção Enzimática/veterinária , Hepatite E/epidemiologia , Hepevirus/genética , Hepevirus/fisiologia , Fígado/virologia , Doenças das Aves Domésticas/patologia , RNA Viral/análise , Estudos Soroepidemiológicos
7.
Emerg Infect Dis ; 20(1): 149-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24378180

RESUMO

A previously unidentified strain of avian hepatitis E virus (aHEV) is now endemic among chickens in Taiwan. Analysis showed that the virus is 81.5%-86.5% similar to other aHEVs. In Taiwan, aHEV infection has been reported in chickens without aHEV exposure, suggesting transmission from asymptomatic cases or repeated introduction through an unknown common source(s).


Assuntos
Galinhas/virologia , Hepatite Viral Animal/epidemiologia , Hepevirus/classificação , Infecções por Vírus de RNA/veterinária , Animais , Genes Virais , Genótipo , Hepevirus/genética , Filogenia , Taiwan/epidemiologia
8.
Virology ; 597: 110154, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917693

RESUMO

To determine the pathogenicity of two different genotypes of avian hepatitis E strains in two species of birds, a total of thirty healthy 12-week-old birds were used. After inoculation, fecal virus shedding, viremia, seroconversion, serum alanine aminotransferase (ALT) increases and liver lesions were evaluated. The results revealed that CHN-GS-aHEV and CaHEV could both infect Hy-Line hens and silkie fowls, respectively. Compared to the original avian HEV strain, the cross-infected virus exhibited a delay of 2 weeks and 1 week in emerged seroconversion, viremia, fecal virus shedding, and increased ALT level, and also showed mild liver lesions. These findings suggested that CHN-GS-aHEV may have circulated in chickens. Overall, these two different genotypes of avian HEV showed some variant pathogenicity in different bird species. This study provides valuable data for further analysis of the epidemic conditions of two avian HEVs in Hy-Line hens and silkie fowls.


Assuntos
Galinhas , Genótipo , Hepatite Viral Animal , Hepevirus , Doenças das Aves Domésticas , Eliminação de Partículas Virais , Animais , Galinhas/virologia , Doenças das Aves Domésticas/virologia , Hepevirus/genética , Hepevirus/patogenicidade , Hepevirus/isolamento & purificação , Hepevirus/classificação , Hepatite Viral Animal/virologia , Hepatite Viral Animal/patologia , Feminino , Fezes/virologia , Fígado/virologia , Fígado/patologia , Viremia/veterinária , Viremia/virologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia , Virulência , Alanina Transaminase/sangue
9.
Virus Res ; 349: 199459, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39237037

RESUMO

Avian hepatitis E virus (HEV) has resulted in significant economic losses in the poultry industry. There is currently no commercial vaccination available to prevent avian HEV infection. Previously, a novel epitope (601TFPS604) was discovered in the ORF2 protein of avian HEV. In this study, peptides were synthesized and assessed for their ability to provide immunoprotecting against avian HEV infection in poultry. Twenty-five Hy-Line Variety Brown laying hens were randomly divided into five groups; groups 1 to 3 respectively immunized with RLLDRLSRTFPS, PETRRLLDRLSR (irrelevant peptide control), or truncated avian HEV ORF2 protein (aa 339-606), while group 4 (negative control) was mock-immunized with PBS and group 5 (normal control) was not immunized or challenged. After the challenge, all hens in groups 2 and 4 showed seroconversion, fecal virus shedding, viremia, alanine aminotransferase (ALT) level increasing, liver lesions and HEV antigen in the liver. There were no pathogenic effects in other groups. Collectively, all of these findings showed that hens were completely protected against avian HEV infection when they were immunized with the peptide containing TFPS of the avian HEV ORF2 protein.


Assuntos
Galinhas , Hepatite Viral Animal , Hepevirus , Doenças das Aves Domésticas , Proteínas Virais , Animais , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Hepevirus/imunologia , Hepevirus/genética , Hepatite Viral Animal/prevenção & controle , Hepatite Viral Animal/imunologia , Hepatite Viral Animal/virologia , Proteínas Virais/imunologia , Proteínas Virais/genética , Vacinas contra Hepatite Viral/imunologia , Feminino , Peptídeos/imunologia , Peptídeos/síntese química , Peptídeos/genética , Eliminação de Partículas Virais , Infecções por Vírus de RNA/prevenção & controle , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/imunologia , Vacinas Virais/imunologia , Fígado/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Fezes/virologia
10.
Viruses ; 15(10)2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896849

RESUMO

Single or mixed infections of multiple pathogens such as avian hepatitis E virus (aHEV) and avian leukosis virus subgroup J (ALV-J) have been detected in numerous laying hens with severe liver injury in China. Thus, aHEV and immunosuppressive viruses are speculated to cause co-infections. In this study, co-infection with aHEV and fowl adenovirus (FAdV) was confirmed by nested RT-PCR and recombinase-aided amplification combined with gene sequencing in two flocks with severe liver injury. Subsequently, the two reference strains, aHEV and FAdV-4, were inoculated into LMH cells to identify their co-infection potential. Confocal microscopy revealed aHEV and FAdV-4 co-infected LMH cells. In addition, the replication dynamics of aHEV and FAdV-4 along with the expression levels of immuno-cytokines were measured. The results indicated colocalization of aHEV and FAdV-4 and inhibition of viral replication in LMH cells. The transcription levels of MDA5, Mx, OASL, and IFN-α were significantly upregulated in LMH cells, whereas those of immune-related factors induced by FAdV-4 were downregulated upon FAdV-4 and aHEV co-infection. These results confirmed the co-infection of aHEV and FAdV-4 in vitro and prompted the antagonistic pathogenic effects of FAdV-4 and aHEV, thereby providing novel insights into the counterbalancing effects of these viruses.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Coinfecção , Hepevirus , Doenças das Aves Domésticas , Animais , Feminino , Galinhas , Infecções por Adenoviridae/veterinária , Citocinas , Adenoviridae/genética , Proliferação de Células
11.
Poult Sci ; 102(5): 102591, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36966643

RESUMO

Epidemiologic investigations in recent years have shown that the detection rate of avian hepatitis E virus (HEV) in chicken flocks is increasing in China. Nevertheless, effective prevention and control measures are still lacking. In this study, specific pathogen-free (SPF) chicken serum against HEV was prepared using recombinant HEV open reading frames (ORF2 and ORF3) proteins as immunogens. An SPF chicken infection model was established by intravenous inoculation of chick embryos. Swab samples were collected at 7, 14, 21, and 28 d of age and used to detect avian HEV load, along with other indicators, by fluorescence quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) assay. The therapeutic effects on blocking vertical HEV transmission were observed, by using the methods of antibody application alone, mixed, or combined application of each of the 2 antibodies with type I interferon. The results showed that type I interferon alone or in combination with antiserum reduced the positive rate of HEV from 100 to 62.5% and 25%, respectively. However, the avian HEV-positivity rate was reduced to 75, 50, and 37.5% after type I interferon was used alone or in combination with antisera against ORF2 and ORF3, respectively. The inhibitory effect of type I interferon alone or in combination with an antiserum, on HEV replication was more significant in cells than in vivo. In this study, the inhibitory effect of type I interferon alone or in combination with an antiserum on avian HEV replication was observed in vitro and in vivo, providing the necessary technical reserve for disease prevention and control.


Assuntos
Hepevirus , Interferon Tipo I , Embrião de Galinha , Animais , Galinhas , Imunoglobulinas , Soros Imunes
12.
Front Immunol ; 14: 1161665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063902

RESUMO

Hepatitis E virus (HEV) is relevant to public health worldwide, and it affects a variety of animals. Big liver and spleen disease (BLS) and hepatitis-splenomegaly syndrome (HSS) associated with avian HEV (aHEV) were first reported in 1988 and in 1991, respectively. Here, cell culture-adapted aHEV genotype 3 strain, YT-aHEV (YT strain), a typical genotype isolated in China, was used for basic and applied research. We evaluated liver injury during the early stages of infection caused by the YT strain in vivo. Both in vivo and in vitro experimental data demonstrated that viral infection induces innate immunity, with mRNA expression levels of two key inflammatory factors, interleukin-1ß (IL-1ß) and IL-18, significantly upregulated. The YT strain infection was associated with the activation of Toll-like receptors (TLRs), nuclear factor kappa B (NF-κB), caspase-1, and NOD-like receptors (NLRs) in the liver and primary hepatocellular carcinoma epithelial cells (LMH). Moreover, inhibiting c-Jun N-terminal kinase, extracellular signal-regulated kinase (ERK1 or 2), P38, NF-κB, or caspase-1 activity has different effects on NLRs, and there is a mutual regulatory relationship between these signaling pathways. The results show that SB 203580, U0126, and VX-765 inhibited IL-1ß and IL-18 induced by the YT strain, whereas Pyrrolidinedithiocarbamate (PDTC) had no significant effect on the activity of IL-1ß and IL-18. Pretreatment of cells with SP600125 had an inhibitory effect on IL-18 but not on IL-1ß. The analysis of inhibition results suggests that there is a connection between Mitogen-activated protein kinase (MAPK), NF-κB, and the NLRs signaling pathways. This study explains the relationship between signaling pathway activation (TLRs, NF-κB, MAPK, and NLR-caspase-1) and viral-associated inflammation caused by YT strain infection, which will help to dynamic interaction between aHEV and host innate immunity.


Assuntos
Carcinoma Hepatocelular , Hepevirus , Neoplasias Hepáticas , Animais , NF-kappa B/metabolismo , Interleucina-18 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores Toll-Like/metabolismo , Caspases
13.
Vet Sci ; 9(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36548837

RESUMO

Avian hepatitis E virus (HEV) is the main etiologic pathogen of chicken big liver and spleen disease which is widely prevalent in China in recent years. However, due to the lack of a highly effective culture system in vitro, a genetically engineered subunit vaccine is the main direction of vaccine development. In this study, ORF3 genes of VaHEV strain from laying hens and YT-aHEV strain from broilers were amplified, respectively, and ORF3 protein was successfully expressed by Escherichia coli prokaryotic expression system. The serum samples were collected periodically to detect avian HEV antibodies by indirect immunofluorescence after specific pathogen free chickens immunized with the two proteins and their mixed proteins, the results showed that all serum samples were positive for antibodies to avian HEV. The antibody-positive chickens were artificially challenged with the cell-adapted strain YT-aHEV strain. The chickens from the immunized control group were infected successfully; no fecal detoxification was detected in the immunized group. In this study, two representative strains of ORF3 subunit vaccines of laying hens and broilers were prepared by prokaryotic expression, the immune effects of different proteins of these were evaluated through immunization and challenge studies in vivo, which provided a new technical possibility for prevention and control of avian HEV.

14.
Poult Sci ; 101(10): 102103, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36041385

RESUMO

To investigate the prevalence of avian hepatitis E virus (HEV) in chickens and gather evidence of viral vertical transmission, we collected 288 cloacal swabs and 288 yolks samples from 12 farms with clinically healthy chickens in 4 different areas in Tai'an City, Shandong Province, China (i.e., Daiyue District, Xintai City, Feicheng City, and Ningyang County). We also collected 240 samples from 2 breeder farms (from each of which 30 chicks, 30 dead embryos, 30 live embryos, and 30 hatching eggs were taken). PCR detection revealed that the positive rates of cloacal swabs and yolks were 6.25% (18/288) and 4.51% (13/288), respectively. Besides, avian HEV was detected with higher positive rates in the chicks (11.67%), hatching eggs (10.00%), live embryos (13.33%), and dead embryos (26.67%) from 2 breeder farms. Sequence and genetic evolution analyses revealed that the nucleotide homology of the isolated strains was 76.4to 83.9% compared with 4 reported genotypes, but the isolated strains were located in a separate branch, indicating they were potential novel genotypes. In conclusion, those results indicate that the latent infection of avian HEV novel genotypes has been widespread in chicken farms in Tai'an City, and provide reliable evidence of the possible vertical transmission of avian HEV.


Assuntos
Hepevirus , Doenças das Aves Domésticas , Animais , Galinhas/genética , China/epidemiologia , Genótipo , Hepevirus/genética , Nucleotídeos , Óvulo/química , Filogenia , Prevalência , RNA Viral/genética
15.
Front Vet Sci ; 9: 901292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110503

RESUMO

Avian hepatitis E virus (HEV) is a major pathogen associated with hepatitis splenomegaly syndrome in chickens and has been reported in China. Phylogenetic trees, Bayesian analysis, positive selection sites screening, and recombination analysis were first used to comprehend the global avian HEVs. All the avian HEV strains, including a new isolate named GX20A1 got from Donglan Black chicken in Guangxi, China, were uniformly defined into four genotypes, and GX20A1, belongs to Genotype 3. The topology of the phylogenetic tree based on the sequences of a 339-bp fragment (coding the helicase) in open reading frame (ORF) 1 of the avian HEVs was consistent with that based on the full-genome sequence. The estimated evolution rate of avian HEVs is 2.73 × 10-3 substitution/site/year (95% confidence interval (CI): 8.01 × 10-4-4.91 × 10-3), and the estimated genetic diversity of the strains experienced a declining phase from 2010 to 2017 and stabilized after 2017. It was further found that the Genotype 3 HEVs, including isolates from Hungary and China, likely originated in the 1930s. Notably, GX20A1 was gathered in the same branch with a Genotype 3 Guangdong isolate CaHEV-GDSZ01, which appeared earlier than GX20A1. In addition, two positive selection sites were identified, one for each of ORF1 and ORF2. Overall, the study revealed that avian HEVs were uniformly defined into four genotypes, and a 339-bp fragment in ORF1 of the viral genome could be used for the classification. A Genotype 3 isolate GX20A1 was first found from Donglan Black chicken and most likely originated from Guangdong.

16.
Poult Sci ; 101(3): 101633, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34986452

RESUMO

Avian hepatitis E virus (HEV) is the major causative pathogen of the big liver and spleen disease, hepatitis-splenomegaly syndrome, and hepatic rupture hemorrhage syndrome. Until now, there are 6 different avian HEV genotypes that infect chickens have been reported worldwide. Epidemiologic investigations of the avian HEV demonstrated that avian HEV has been widely spread in China in recent years. In this study, an avian HEV named YT-aHEV was obtained from white-feathered broilers using LMH cells by virus isolation assay in Shandong province, China. The complete genome consists of 6656-nt excluding the poly(A) tail. The isolate was highly similar to the CaHEV strain and segregated into the same branch belonging to avian HEV genotype 3. Indirect immunofluorescence using capsid protein-specific polyclonal antibodies confirmed that YT-aHEV could establish productive infection and replicate stably in LMH cells. Furthermore, an in vivo avian HEV infection model was established successfully in specific pathogen-free chicken embryos by intravenous experiments. In the present study, we demonstrate an avian HEV infection associated with liver lesions of hemorrhage and swelling by LMH cells for the first time in a white-feather broiler flock in China. This research also provides a new diagnosis method for detection of avian HEV, which laid a foundation for the understanding of pathogenicity and molecular biology of this virus for further study.


Assuntos
Hepatite Viral Animal , Hepevirus , Doenças das Aves Domésticas , Animais , Embrião de Galinha , Galinhas , China/epidemiologia , Plumas/patologia , Hepatite Viral Animal/epidemiologia , Hepevirus/genética
17.
Infect Genet Evol ; 96: 105095, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34597819

RESUMO

Avian hepatitis E virus (aHEV) is the causative agent of an important disease of broiler breeders and layers. aHEV cannot be readily propagated in cell culture and is characterised primarily by sequencing of amplicons generated through several RT-PCRs that target individual genes. This study aims to uncover the origin of current Australian aHEV isolates based on whole genome sequencing using clinical liver tissues. Complete genome sequences of the two aHEV isolates were assembled using Nanopore and Illumina reads. The two isolates possessed only four single nucleotide polymorphisms to each other. Comparison of the sequences with aHEV genome sequences available in the GenBank showed the highest nucleotide sequence identity of 88% with the prototype USA strain (AY535004), 82% with the European (AM943647) and genotype 1 Australian strains (AM943647). Recombination analysis suggested that aHEV isolates characterised in this study are progeny of a cross between a US and a Hungarian strain. Phylogenetic tree and phylogenetic networks constructed using complete genome and individual coding sequences revealed that Australian aHEV isolates formed a distinct clade closer to the USA strains and classified as genotype 2 whereas genotype 1 Australian strain clustered together with South Korean strains.


Assuntos
Galinhas , Genoma Viral , Hepatite Viral Animal/virologia , Hepevirus/genética , Doenças das Aves Domésticas/virologia , Infecções por Vírus de RNA/veterinária , Animais , Feminino , Fígado/virologia , Filogenia , Infecções por Vírus de RNA/virologia , Recombinação Genética , Sequenciamento Completo do Genoma
18.
Transbound Emerg Dis ; 67(6): 2403-2407, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32304264

RESUMO

Avian hepatitis E virus (HEV) is highly variable and has multiple genotypes. Previous studies showed that the current epidemic strain in China is genotype 5, but the relevant detection was only carried out in flocks with hepatic rupture haemorrhage syndrome, which does not mean that other genotypes do not exist. In this study, a broader analysis involving different chicken flocks was performed to understand the epidemic status of avian HEV in China. The results showed that the HEV-positive rate of all samples was 7.92% (78/985), and four different genotypes have been identified by analysing a truncate capsid gene fragment, while the homology between them is about 80%. Two of them are separately known as genotype 3 and genotype 5, while the other two are completely unidentified, indicating that there are multiple genotypes of avian HEV prevalent in China. At the same time, the distribution of these genotypes has no obvious geographical clustering pattern, only slightly different in commercial layers, broilers and some indigenous species. This study shows the genetic diversity of avian HEV in China and reminds us to pay more attention to its variation and evolution.


Assuntos
Galinhas/virologia , Variação Genética , Hepatite Viral Animal/virologia , Hepevirus/genética , Doenças das Aves Domésticas/virologia , Infecções por Vírus de RNA/veterinária , Animais , Proteínas do Capsídeo/genética , China/epidemiologia , Genótipo , Hepatite Viral Animal/epidemiologia , Filogenia , Doenças das Aves Domésticas/epidemiologia , Prevalência , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/virologia
19.
Poult Sci ; 99(12): 6657-6663, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33248582

RESUMO

In recent years, the avian hepatitis E virus (HEV) has been widely spread in China, causing huge economic losses. Several studies have carried out detailed epidemiologic investigations of the avian HEV, but no data were from Jiangxi province. Since early April 2020, diseases similar to hepatic rupture hemorrhage syndrome caused by the avian HEV occurred in a Roman Brown layer farm in Jiangxi province, indicating this virus may also be epidemic there. To make this assumption clear, 20 liver samples were collected from the sick flock and then analyzed by detailed viral detection, which confirmed that the avian HEV should be responsible for the aforementioned disease (6 of 20). Then, the capsid gene of the virus was sequenced to show the molecular characteristics of the strain circulating in the aforementioned flock. Sequence comparison showed that it shared 80.7 to 94.7% identities with 12 published strains, while phylogenetic analysis confirmed that it belongs to a new subtype of genotype 3. Moreover, basing on a 242 bp fragment, the novel also shared high similarities to reference strains identified as genotypes before, revealing the genotype 3 maybe very popular in China and even can be divided into several subgroups. In conclusion, a novel avian HEV strain was identified in this study, which belongs to a new subtype of genotype 3. The analysis makes up for the molecular epidemiologic data of avian HEV and provides a basis for further understanding the spread of avian HEV in China.


Assuntos
Hepatite Viral Animal , Hepevirus , Doenças das Aves Domésticas , Infecções por Vírus de RNA , Animais , Galinhas , China , Genótipo , Hepatite Viral Animal/virologia , Hepevirus/classificação , Hepevirus/genética , Filogenia , Doenças das Aves Domésticas/virologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia
20.
Vet Microbiol ; 242: 108577, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32122587

RESUMO

Since 2016, severe outbreaks of hepatic rupture hemorrhage syndrome (HRHS) associated with infections of tentative novel avian hepatitis E virus (HEV) have emerged in chickens in China, causing increased mortality and decreased laying rate in adult hens and disturbing the hatching and breeding of chicks. To further identify the genotype and gain a better understanding of the genetic properties of the avian HEV responsible for that, a strain from Hebei province was isolated, purified and sequenced in this study. Results identified a novel avian HEV genotype, sharing 79.5-86.9% identities with other published avian HEV strains, and having higher identities with Orthohepevirus A HEV strains. More importantly, the new isolate contains various amino-acid substitutions in its functional proteins, including methyltransferase, helicase, RNA-dependent RNA polymerase. The data presented in this report will enhance the current understanding of the genetic diversity of the avian HEV and provide additional insight into the critical factors that determine the pathogenicity.


Assuntos
Genoma Viral , Hemorragia/veterinária , Hepatite Viral Animal/virologia , Hepevirus/genética , Animais , Galinhas/virologia , China , Fazendas , Variação Genética , Genótipo , Hemorragia/virologia , Hepatite Viral Animal/complicações , Hepevirus/patogenicidade , Fígado/patologia , Fígado/virologia , Mutação , Filogenia , Doenças das Aves Domésticas/virologia , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA