Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793819

RESUMO

Ultrafast X-ray computed tomography is an advanced imaging technique for multiphase flows. It has been used with great success for studying gas-liquid as well as gas-solid flows. Here, we apply this technique to analyze density-driven particle segregation in a rotating drum as an exemplary use case for analyzing industrial particle mixing systems. As glass particles are used as the denser of two granular species to be mixed, beam hardening artefacts occur and hamper the data analysis. In the general case of a distribution of arbitrary materials, the inverse problem of image reconstruction with energy-dependent attenuation is often ill-posed. Consequently, commonly known beam hardening correction algorithms are often quite complex. In our case, however, the number of materials is limited. We therefore propose a correction algorithm simplified by taking advantage of the known material properties, and demonstrate its ability to improve image quality and subsequent analyses significantly.

2.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38544257

RESUMO

Dental 3D modeling plays a pivotal role in digital dentistry, offering precise tools for treatment planning, implant placement, and prosthesis customization. Traditional methods rely on physical plaster casts, which pose challenges in storage, accessibility, and accuracy, fueling interest in digitization using 3D computed tomography (CT) imaging. We introduce a method that can reduce both artifacts simultaneously. To validate the proposed method, we carried out CT scan experiments using plaster dental casts created from dental impressions. After the artifact correction, the CT image quality was greatly improved in terms of image uniformity, contrast-to-noise ratio (CNR), and edge sharpness. We examined the correction effects on the accuracy of the 3D models generated from the CT images. As referenced to the 3D models derived from the optical scan data, the root mean square (RMS) errors were reduced by 8.8~71.7% for three dental casts of different sizes and shapes. Our method offers a solution to challenges posed by artifacts in CT scanning of plaster dental casts, leading to enhanced 3D model accuracy. This advancement holds promise for dental professionals seeking precise digital modeling for diverse applications in dentistry.


Assuntos
Artefatos , Tomografia Computadorizada por Raios X , Tomografia Computadorizada de Feixe Cônico/métodos
3.
BMC Med Imaging ; 23(1): 17, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36710344

RESUMO

BACKGROUND: Slot-scan digital radiography (SSDR) is equipped with detachable scatter grids and a variable copper filter. In this study, this function was used to obtain parameters for low-dose imaging for whole-spine imaging. METHODS: With the scatter grid removed and the beam-hardening (BH) filters (0.0, 0.1, 0.2, or 0.3 mm) inserted, the tube voltage (80, 90, 100, 110, or 120 kV) and the exposure time were adjusted to 20 different parameters that produce equivalent image quality. Slot-scan radiographs of an acrylic phantom were acquired with the set parameters, and the optimal parameters (four types) for each filter were determined using the figure of merit. For the four types of parameters obtained in the previous section, SSDR was performed on whole-spine phantoms by varying the tube current, and the parameter with the lowest radiation dose was determined by visual evaluation. RESULTS: The parameters for each filter according to the FOM results were 90 kV, 400 mA, and 2.8 ms for 0.0 mm thickness; 100 kV, 400 mA, and 2.0 ms for 0.1 mm thickness; 100 kV, 400 mA, and 2.8 ms for 0.2 mm thickness; and 110 kV, 400 mA, and 2.2 ms for 0.3 mm thickness. Visual evaluation of the varying tube currents was performed using these four parameters when the BH filter thicknesses were 0.0, 0.1, 0.2, and 0.3 mm. The entrance surface dose was 59.44 µGy at 90 kV, 125 mA, and 2.8 ms; 57.39 µGy at 100 kV, 250 mA, and 2.0 ms; 46.89 µGy at 100 kV, 250 mA, and 2.8 ms; and 39.48 µGy at 110 kV, 250 mA, and 2.2 ms, indicating that the 0.3-mm BH filter was associated with the minimum dose. CONCLUSION: Whole-spine SSDR could reduce the dose by 79% while maintaining the image quality.


Assuntos
Intensificação de Imagem Radiográfica , Humanos , Intensificação de Imagem Radiográfica/métodos , Doses de Radiação , Imagens de Fantasmas , Cintilografia
4.
Sensors (Basel) ; 23(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36772330

RESUMO

Metal artifacts in dental computed tomography (CT) images, caused by highly X-ray absorbing objects, such as dental implants or crowns, often more severely compromise image readability than in medical CT images. Since lower tube voltages are used for dental CTs in spite of the more frequent presence of metallic objects in the patient, metal artifacts appear more severely in dental CT images, and the artifacts often persist even after metal artifact correction. The direct sinogram correction (DSC) method, which directly corrects the sinogram using the mapping function derived by minimizing the sinogram inconsistency, works well in the case of mild metal artifacts, but it often fails to correct severe metal artifacts. We propose a modified DSC method to reduce severe metal artifacts, and we have tested it on human dental images. We first segment the metallic objects in the CT image, and then we forward-project the segmented metal mask to identify the metal traces in the projection data with computing the metal path length for the rays penetrating the metal mask. In the sinogram correction with the DSC mapping function, we apply the weighting proportional to the metal path length. We have applied the proposed method to the phantom and patient images taken at the X-ray tube voltage of 90 kVp. We observed that the proposed method outperforms the original DSC method when metal artifacts were severe. However, we need further extensive studies to verify the proposed method for various CT scan conditions with many more patient images.


Assuntos
Artefatos , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Tomografia Computadorizada por Raios X/métodos , Metais , Imagens de Fantasmas
5.
J Xray Sci Technol ; 30(4): 805-822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599528

RESUMO

Tube of X-ray computed tomography (CT) system emitting a polychromatic spectrum of photons leads to beam hardening artifacts such as cupping and streaks, while the metal implants in the imaged object results in metal artifacts in the reconstructed images. The simultaneous emergence of various beam-hardening artifacts degrades the diagnostic accuracy of CT images in clinics. Thus, it should be deeply investigated for suppressing such artifacts. In this study, data consistency condition is exploited to construct an objective function. Non-convex optimization algorithm is employed to solve the optimal scaling factors. Finally, an optimal bone correction is acquired to simultaneously correct for cupping, streaks and metal artifacts. Experimental result acquired by a realistic computer simulation demonstrates that the proposed method can adaptively determine the optimal scaling factors, and then correct for various beam-hardening artifacts in the reconstructed CT images. Especially, as compared to the nonlinear least squares before variable substitution, the running time of the new CT image reconstruction algorithm decreases 82.36% and residual error reduces 55.95%. As compared to the nonlinear least squares after variable substitution, the running time of the new algorithm decreases 67.54% with the same residual error.


Assuntos
Artefatos , Tomografia Computadorizada por Raios X , Algoritmos , Simulação por Computador , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
6.
J Xray Sci Technol ; 30(5): 863-874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694950

RESUMO

BACKGROUND: Beam-hardening in tomography with polychromatic X-ray sources results from the nonlinear relationship between the amount of substance in the X-ray beam and attenuation. Simple linearisation curves can be derived with the use of an appropriate step wedge, however, this does not yield good results when different materials are present whose relationships between X-ray attenuation and energy are very different. OBJECTIVE: To develop a more accurate method of beam-hardening correction for two-phase samples, particularly immersed or embedded biological hard tissue. METHODS: Use of a two-dimensional step wedge is proposed in this study. This is not created physically but is derived from published X-ray attenuation coefficients in conjunction with a modelled X-ray spectrum, optimised from X-ray attenuation measurements of a calibration carousel. To test this method, a hydroxyapatite disk was scanned twice; first dry, and then immersed in 70% ethanol solution (commonly used to preserve biological specimens). RESULTS: With simple linearisation the immersed disk reconstruction exhibited considerable residual beam hardening, with edges appearing approximately 10% more attenuating. With 2-dimensional correction, the attenuation coefficient showed only around 0.5% deviation from the dry case. CONCLUSION: Two-dimensional beam-hardening correction yielded accurate results and does not require segmentation of the two phases individually.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Algoritmos , Etanol , Hidroxiapatitas , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Microtomografia por Raio-X/métodos
7.
Sensors (Basel) ; 21(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068586

RESUMO

Lab-based X-ray computed tomography (XCT) systems use X-ray sources that emit a polychromatic X-ray spectrum and detectors that do not detect all X-ray photons with the same efficiency. A consequence of using a polychromatic X-ray source is that beam hardening artefacts may be present in the reconstructed data, and the presence of such artefacts can degrade XCT image quality and affect quantitative analysis. If the product of the X-ray spectrum and the quantum detection efficiency (QDE) of the detector are known, alongside the material of the scanned object, then beam hardening artefacts can be corrected algorithmically. In this work, a method for estimating the product of the X-ray spectrum and the detector's QDE is offered. The method approximates the product of the X-ray spectrum and the QDE as a Bézier curve, which requires only eight fitting parameters to be estimated. It is shown experimentally and through simulation that Bézier curves can be used to accurately simulate polychromatic attenuation and hence be used to correct beam hardening artefacts. The proposed method is tested using measured attenuation data and then used to calculate a beam hardening correction for an aluminium workpiece; the beam hardening correction leads to an increase in the contrast-to-noise ratio of the XCT data by 41% and the removal of cupping artefacts. Deriving beam hardening corrections in this manner is more versatile than using conventional material-specific step wedges.

8.
Odontology ; 109(3): 679-686, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33550479

RESUMO

The purpose of this study was to evaluate the appearance of artifacts by four types of root canal filling sealers on cone-beam computed tomography (CBCT) images. Thirty standardized tooth models were given the radiopacity equivalent to human teeth, and root canal preparation was performed using WaveOne Gold. Root canal filling by a single-point method was performed using WaveOne Gold gutta-percha points and four types of root canal sealers: AH Plus (AH), CANALS (CA), BioRoot RCS (BR), and MTA Fillapex (MTA). Samples were taken by periapical radiography at 60 kV and scanned by CBCT at three tube voltages (70, 85, and 100 kV). The gray-scale values (GVs) of the periapical radiographs were measured and the aluminum equivalents were calculated. On the CBCT axial images, the artifact and dentin area GVs were measured and the rate of change in the GV (RCGV) was calculated as follows: RCGV (%) = (dentin area GV - artifact GV)/dentin area GV × 100. High-density areas with artifacts on the CBCT images were also measured. On the periapical radiographs, the aluminum equivalent was largest for AH and smallest for MTA. On the CBCT images, AH showed the largest values for both RCGV and the high-density areas, while BR and MTA showed comparable values. Correlations were found between the radiopacity on the periapical radiographs and the degree of artifacts on the CBCT images. These findings suggest that the greater the contrast in the 2D image, the higher the artifacts in the 3D image.


Assuntos
Artefatos , Materiais Restauradores do Canal Radicular , Tomografia Computadorizada de Feixe Cônico , Cavidade Pulpar , Guta-Percha , Humanos
9.
Rep Pract Oncol Radiother ; 25(4): 692-697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684854

RESUMO

PURPOSE: The objective of this study was to assess synthesized effective atomic number (Zeff) values with a new developed tissue characteristic phantom and contrast material of varying iodine concentrations using single-source fast kilovoltage switching dual-energy CT (DECT) scanner. METHODS: A newly developed multi energy tissue characterisation CT phantom and an acrylic phantom with various iodine concentrations of were scanned using single-source fast kilovoltage switching DECT (GE-DECT) scanner. The difference between the measured and theoretical values of Zeff were evaluated. Additionally, the difference and coefficient of variation (CV) values of the theoretical and measured values were compared with values obtained with the Canon-DECT scanner that was analysed in our previous study. RESULTS: The average Zeff difference in the Multi-energy phantom was within 4.5%. The average difference of the theoretical and measured Zeff values for the acrylic phantom with variation of iodine concentration was within 3.3%. Compared to the results for the single-source Canon-DECT scanner used in our previous study, the average difference and CV of the theoretical and measured Zeff values obtained with the GE-DECT scanner were markedly smaller. CONCLUSIONS: The accuracy of the synthesized Zeff values with GE-DECT had a good agreement with the theoretical Zeff values for the Multi-Energy phantom. The GE-DECT could reduce the noise and the accuracy of the Zeff values than that with Canon-DECT for the varying iodine concentrations of contrast medium. ADVANCES IN KNOWLEDGE: The accuracy and precision of the Zeff values of the contrast medium with the GE-DECT could be sufficient with human equivalent materials.

10.
Artigo em Japonês | MEDLINE | ID: mdl-32074525

RESUMO

PURPOSE: A virtual monochromatic image (VMI) is acquired from two different types of polychromatic energy X-rays, not a monochromatic X-ray. The effective energy of monochromatic X-ray does not vary in passing through the patient's body. On the other hand, beam hardening effects are seen in images because of the change of polychromatic X-ray energy. The purpose of the present study was to evaluate the beam hardening improvement effect of VMI using a phantom with a bone mimicking ring. METHOD: We used a water equivalent electron density phantom with a hole in the center for inserting various measurement materials (i.e. fat, two types of bone with differing densities, contrast medium, blood, and water). Then, the CT numbers of each measurement materials were obtained from single energy CT (SECT) images and VMIs, respectively. Also, an additional bone-mimetic ring was used to obtain the CT numbers for evaluation of beam hardening effect. The CT number change rates were calculated from the obtained CT numbers with and without beam hardening effect. RESULT: The rate of CT number, change of VMI was significantly lower than that of SECT for all measured materials. CONCLUSION: In this study, VMI minimized changes in CT numbers due to the beam hardening effect and showed a higher beam hardening reduction effect.


Assuntos
Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X , Artefatos , Elétrons , Humanos
11.
Int J Legal Med ; 133(6): 1869-1877, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30911839

RESUMO

PURPOSE: Forensic investigations could benefit from non-invasive in situ characterization of bullets. Therefore, the use of CT imaging was explored for the analysis of bullet geometry and composition. Bullet visualization with CT is challenging as the metal constituents suffer from excessive X-ray attenuation due to their high atomic number, density, and geometry. METHODS: A metal reference phantom was developed containing small discs of various common metals (aluminum, iron, stainless steel, copper, brass, tungsten, and lead). CT images were acquired with 70-150 kVp and 200-400 mAs and were reconstructed using an extended Hounsfield unit (HU) scale (- 10,240 to + 30,710). For each material, the mean CT number (HU) was measured to construct a metal database. Different bullets (n = 11) were scanned in a soft tissue-mimicking phantom. Bullet size and shape were measured, and composition was evaluated by comparison with the metal database. Also, the effect of bullet orientation within the CT scanner was evaluated. RESULTS: In the reference phantom, metals were classified into three groups according to their atomic number (Z): low (Z ≤ 13; HU < 3000), medium (Z = 25-30; HU = 13,000-20,000), and high (Z ≥ 74; HU > 30,000). External bullet contours could be accurately delineated. Internal interfaces between jacket and core could not be identified. Cross-sectional spatial profile plots of the CT number along bullets' short axis revealed beam hardening and photon starvation effects that depended on bullet size, shape, and orientation within the CT scanner. Therefore, the CT numbers of bullets were unreliable and could not be used for material characterization by comparison with the reference phantom. CONCLUSION: CT-based characterization of bullets was feasible in terms of size and shape but not composition.


Assuntos
Balística Forense , Metais , Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Armas de Fogo , Humanos
12.
J Xray Sci Technol ; 27(5): 919-934, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31356224

RESUMO

BACKGROUND: X-ray computed tomography (CT) can non-destructively examine objects by producing three-dimensional images of their internal structure. Although the availability of biomedical micro-CT offers the increased access to scanners, CT images of dense objects are susceptible to artifacts particularly due to beam hardening. OBJECTIVE: This study proposes and evaluates a simple semi-empirical correction method for beam hardening and scatter that can be applied to biomedical scanners. METHODS: Novel calibration phantoms of varying diameters were designed and built from aluminum and poly[methyl-methacrylate]. They were imaged using two biomedical micro-CT scanners. Absorbance measurements made through different phantom sections were fit to polynomial and inversely exponential functions and used to determine linearization parameters. Corrections based on the linearization equations were applied to the projection data before reconstruction. RESULTS: Correction for beam hardening was achieved when applying both scanners with the correction methods to all test objects. Among them, applying polynomial correction method based on the aluminum phantom provided the best improvement. Correction of sample data demonstrated a high agreement of percent-volume composition of dense metallic inclusions between using the Bassikounou meteorite from the micro-CT images (13.7%) and previously published results using the petrographic thin sections (14.6% 8% metal and 6.6% troilite). CONCLUSIONS: Semi-empirical linearization of X-ray projection data with custom calibration phantoms allows accurate measurements to be obtained on the radiodense samples after applying the proposed correction method on biomedical micro-CT images.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microtomografia por Raio-X/métodos , Algoritmos , Artefatos , Calibragem , Imageamento Tridimensional , Meteoroides , Imagens de Fantasmas
13.
Rep Pract Oncol Radiother ; 24(5): 499-506, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467491

RESUMO

OBJECTIVES: The aim of the current study is to evaluate the accuracy and the precision of raw-data-based relative electron density (REDraw) and the calibration-based RED (REDcal) at a range of low-RED to high-RED for tissue-equivalent phantom materials by comparing them with reference RED (REDref) and to present the difference of REDraw and REDcal for the contrast medium using dual-energy CT (DECT). METHODS: The REDraw images were reconstructed by raw-data-based decomposition using DECT. For evaluation of the accuracy of the REDraw, REDref was calculated for the tissue-equivalent phantom materials based on their specified density and elemental composition. The REDcal images were calculated using three models: Lung-Bone model, Lung-Ti model and Lung-Ti (SEMAR) model which used single-energy metal artifact reduction (SEMAR). The difference between REDraw and REDcal was calculated. RESULTS: In the titanium rod core, the deviations of REDraw and REDcal (Lung-Bone model, Lung-Ti model and Lung-Ti model with SEMAR) from REDref were 0.45%, 50.8%, 15.4% and 15.0%, respectively. The largest differences between REDraw and REDcal (Lung-Bone model, Lung-Ti model and Lung-Ti model with SEMAR) in the contrast medium phantom were 8.2%, -23.7%, and 28.7%, respectively. However, the differences between REDraw and REDcal values were within 10% at 20 mg/ml. The standard deviation of the REDraw was significantly smaller than the REDcal with three models in the titanium and the materials that had low CT numbers. CONCLUSION: The REDcal values could be affected by beam hardening artifacts and the REDcal was less accurate than REDraw for high-Z materials as titanium. ADVANCES IN KNOWLEDGE: The raw-data-based reconstruction method could reduce the beam hardening artifact compared with image-based reconstruction and increase the accuracy for the RED estimation in high-Z materials, such as titanium and iodinated contrast medium.

14.
J Microsc ; 272(3): 229-241, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30088275

RESUMO

Beam hardening artefacts deteriorate the reconstructed image quality in industrial computed tomography. The appearances of beam hardening artefacts can be cupping effects or streaks. They impair the image fidelity to the object being scanned. This work aims at comparing a variety of commonly used beam hardening correction algorithms in the context of industrial computed tomography metrology. We choose four beam hardening correction algorithms of different types for the comparison. They are a single-material linearization algorithm, a multimaterial linearization algorithm, a dual-energy algorithm and an iterative reconstruction algorithm. Each beam hardening correction algorithm is applied to simulated data sets of a dual-material phantom consisting of multiple rods. The comparison is performed on data sets simulated both under ideal conditions and with the addition of quantum noise. The performance of each algorithm is assessed with respect to its effect on the final image quality (contrast-to-noise ratio, spatial resolution), artefact reduction (streaks, cupping effects) and dimensional measurement deviations. The metrics have been carefully designed in order to achieve a robust and quantifiable assessment. The results suggest that the single-material linearization algorithm can reduce beam hardening artefacts in the vicinity of one material. The multimaterial linearization algorithm can further reduce beam hardening artefacts induced by the other material and improve the dimensional measurement accuracy. The dual-energy method can eliminate beam hardening artefacts, and improve the low contrast visibility and dimensional measurement accuracy. The iterative algorithm is able to eliminate beam hardening streaks. However, it induces aliasing patterns around the object edge, and its performance depends critically upon computational power. The contrast-to-noise ratio and spatial resolution are declined by noise. Noise also increases the difficulty of image segmentation and quantitative analysis. LAY DESCRIPTION: X-ray computed tomography (CT) is a major breakthrough in digital imaging technology in the late 20th century. First used as an important tool in medical imaging, CT has gradually introduced to the nonmedical areas (e.g. industrial nondestructive testing). Inherently CT is more prone to artefacts comparing to the conventional real-time X-ray image. Beam hardening artefacts caused by the polychromatic nature of X-ray spectra are known to deteriorate the reconstructed image quality in industrial CT. A number of beam hardening correction algorithms exist and are used across medical CT. However, there is a lack of research on their effectiveness on industrial CT. This study presents an in-depth beam hardening correction algorithm comparison in industrial CT. Since this study takes various factors of the algorithm performance into account, it provides insights of the advantages and disadvantages of each algorithm and assists the choice of algorithm to meet specific needs of industry. Existing beam hardening correction algorithms are divided into the following four categories: linearization, segmentation based linearization, dual-energy and iterative methods. Since the linearization method can only correct single-material objects, we did not include it in the comparative study. Among the remaining categories, we chose one from each category for comparison, for methods in one peer category share similar physical and mathematical principles. The methods are polynomial fit, Joseph segmentation, dual energy and IMPACT iterative method. This study uses a simulated polychromatic data set of a multimaterial phantom. The central slice of the corrected reconstructions is then assessed and the results are presented. In this study, we will compare beam hardening correction methods with respect to their performance on image quality, the removal of image artefacts and the influence on dimensional accuracy.

15.
Radiol Med ; 123(8): 593-600, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29637389

RESUMO

OBJECTIVE: The study aimed to assess image quality when using dual-energy CT (DECT) to reduce metal artifacts in subjects with knee and hip prostheses. METHODS: Twenty-two knee and 10 hip prostheses were examined in 31 patients using a DECT protocol (tube voltages 100 and 140 kVp). Monoenergetic reconstructions were extrapolated at 64, 69, 88, 105, 110, 120, 140, 170, and 190 kilo-electron volts (keV) and the optimal energy was manually selected. The B60-140 and Fast DE reconstructions were made by CT. The image quality and diagnostic value were subjectively and objectively determined. Double-blind qualitative assessment was performed by two radiologists using a Likert scale. For quantitative analysis, a circular region of interest (ROI) was placed by a third radiologist within the most evident streak artifacts on every image. Another ROI was placed in surrounding tissues without artifacts as a reference. RESULTS: The inter-reader agreement for the qualitative assessment was nearly 100%. The best overall image quality (37.8% rated "excellent") was the Fast DE Siemens reconstruction, followed by B60-140 and Opt KeV (20.5 and 10.2% rated excellent). On the other hand, DECT images at 64, 69 and 88 keV had the worse scores. The number of artifacts was significantly different between monoenergetic images. Nevertheless, because of the high number of pairwise comparisons, no differences were found in the post hoc analysis except for a trend toward statistical significance when comparing the 170 and 64 keV doses. CONCLUSIONS: DECT with specific post-processing may reduce metal artifacts and significantly enhance the image quality and diagnostic value when evaluating metallic implants.


Assuntos
Artefatos , Prótese de Quadril , Prótese do Joelho , Metais , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
16.
J Xray Sci Technol ; 26(4): 593-602, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29562575

RESUMO

PURPOSE: Metal artifacts severely degrade CT image quality in clinical diagnosis, which are difficult to removed, especially for the beam hardening artifacts. The metal artifact reduction (MAR) based on prior images are the most frequently-used methods. However, there exists a lot misclassification in most prior images caused by absence of prior information such as the spectrum distribution of X-ray beam source, especially many or big metal included. The purpose of this work is to find a more accurate prior image to improve image quality. METHODS: The proposed method comprise of following four steps. First, the metal image is segmented by thresholding an initial image, where the metal traces are identified in the initial projection data using the forward projection of the metal image. Second, the accurate absorbent model of certain metal image is calculated according to the spectrum distribution of certain X-ray beam source and energy-dependent attenuation coefficients of metal. Then, a new metal image is reconstructed by the general analytical reconstruction algorithm such as filtered back projection (FPB). The prior image is obtained by segmenting the difference image between the initial image and the new metal image into air, tissue and bone. Finally, the initial projection data are normalized by dividing the projection data of prior image pixel to pixel, the corrected image is obtained by interpolation, denormalization and reconstruction. RESULTS: Some clinical images with dental fillings and knee prostheses are used to evaluate the proposed algorithm and normalized metal artifact reduction (NMAR) and linear interpolation (LI) method. The results demonstrate the artifacts can be reduced efficiently by the proposed method. CONCLUSIONS: The proposed method could obtain an exact prior image using the prior information about X-ray beam source and energy-dependent attenuation coefficients of metal. As a result, the better performance of reducing beam hardening artifacts can be improved, even though there were many or big implants. Moreover, the process of the proposed method is rather simple and little extra calculation burden is necessary. It has superiorities over other algorithms when include big or many implants.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Artefatos , Humanos , Arcada Osseodentária/diagnóstico por imagem , Joelho/diagnóstico por imagem , Prótese do Joelho , Metais , Imagens de Fantasmas
17.
J Xray Sci Technol ; 26(5): 691-705, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29991152

RESUMO

BACKGROUND: Cylindrical phantoms are often imaged by X-ray computed tomography (CT) to evaluate the extent of beam hardening (or cupping artifact) resulting from a polychromatic X-ray source. OBJECTIVE: Our goal was to derive analytical expressions for the reconstructed image of a homogeneous cylindrical phantom exhibiting a cupping artifact, to permit a quantitative comparison with experimental cupping data. METHODS: A filtered backprojection method was employed to obtain the analytical cupping profile for the phantom, assuming that the projection data could be approximated as a power series with respect to the sample penetration thickness. RESULTS: The cupping profile was obtained analytically as a series of functions by employing Ramachandran filtering with an infinite Nyquist wavenumber. The quantitative relationship between the power series of the projection and the nth moment of the linear attenuation coefficient spectrum of the phantom was also determined. Application of the obtained cupping profile to the evaluation of the practical reconstruction filters with a finite Nyquist wavenumber and to the best choice of the contrast agent was demonstrated. CONCLUSIONS: The set of exact solutions derived in this work should be applicable to the analysis of cylindrical phantom experiments intended to evaluate CT systems.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Artefatos , Meios de Contraste , Imagens de Fantasmas
18.
Artigo em Japonês | MEDLINE | ID: mdl-29353837

RESUMO

The purpose of this study was to investigate the effect of tube voltage on relationship between a patient's body weight and contrast enhancement in abdominal contrast-enhanced computed tomography (CT). Five phantoms with diameters ranging from 19.2 to 30.6 cm, including syringes filled with iodine solution diluted to different concentrations, were used to compare the effects at tube voltages of 80, 100, and 120 kVp. Furthermore, for clinical study, 300 patients who underwent abdominal contrast-enhanced CT examinations were enrolled and enhancements of aorta and hepatic parenchyma in arterial phase and equilibrium phase were compared at 80, 100, and 120 kVp using a contrast medium administration proportional to the body weight. The contrast enhancement was decreased with increase in phantom size because of the beam-hardening effect, and however, the decrease was less at low tube voltages of 80 and 100 kVp (lowest at 80 kVp), demonstrating the beam-hardening effect was reduced at low tube voltages. The enhancements of aorta and hepatic parenchyma indicated tended to increase in patients with a heavy body weight, and this trend was stronger at 80 and 100 kVp (80 kVp>100 kVp). Therefore, it was indicated that the problem of excessive contrast enhancement in patients with a high body weight was prominent at low tube voltages because the beam-hardening effect in patients with a heavy body weight was weaken by low tube voltages.


Assuntos
Abdome/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador
19.
AJR Am J Roentgenol ; 208(1): 114-123, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27786561

RESUMO

OBJECTIVE: The purpose of this study was to describe the frequency and appearance of beam-hardening artifacts on rapid-kilovoltage-switching dual-energy CT (DECT) image reconstructions of the pelvis. MATERIALS AND METHODS: Monochromatic (70, 52, and 120 keV) and material decomposition CT images (iodine-water and water-iodine) from consecutive pelvic rapid-kilovoltage-switching DECT scans were retrospectively evaluated. We recorded the presence, type (high versus low attenuation), and severity of beam-hardening artifacts (Likert scale from 0, barely seen, to 4, severe), clarity of anatomic delineation (Likert scale from 0, unimpaired, to 4, severely impaired) and SD of CT numbers, iodine and water concentrations, and gray-scale values for artifact-affected regions and corresponding unaffected reference tissue. A pelvic phantom was scanned and evaluated in a similar manner. Wilcoxon signed rank and paired t tests were used to compare results between the image reconstructions. RESULTS: Beam-hardening artifacts were seen in all image reconstructions in all 41 patients (22 men, 19 women; mean age, 57 years; range 22-86 years) who met the inclusion criteria. The median artifact severity score was worse for water-iodine and iodine-water images (score of 3 for each) than for 70-keV (score 1), 52-keV (score 2), and 120-keV (score 1) images (all p < 0.001). The anatomic delineation was worse (p < 0.001) for water-iodine and iodine-water images than for monochromatic images. Higher CT number SD values, material concentrations, and gray-scale values were found for areas affected by artifacts than for reference tissues in all datasets (all p < 0.001). Similar results were seen in the phantom study. CONCLUSION: Beam-hardening artifacts are prevalent in pelvic rapid-kilovoltage-switching DECT and more severe in material decomposition than monochromatic image reconstructions.


Assuntos
Algoritmos , Artefatos , Pelve/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação
20.
J Xray Sci Technol ; 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28269812

RESUMO

Since beam hardening causes cupping and streaking artifacts in computed tomographic images, the presence of such artifacts can impair both qualitative and quantitative analysis of the reconstructed data. When the scanned object is composed of a single material, it is possible to correct beam hardening artifacts using the linearization method. However, for multi-material objects, an iterative segmentation-based correction algorithm is needed, which is not only computationally expensive, but may also fail if the initial segmentation result is poor. In this study, a new multi-material linearization beam hardening correction method was proposed and evaluated. The new method is fast and implemented in the same manner as a mono-material linearization. The correction takes approximately 0.02 seconds per projection. Although facing a potential disadvantage of requiring attenuation measurements of one of the object's constituent materials, applying the new method has demonstrated its capability for a multi-material workpiece with substantial reduction in both cupping and streaking artifacts. For example, the study showed that the absolute cupping artefacts in steel, titanium and aluminum spheres were reduced from 22%, 20% and 20% to 5%, 1% and 0%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA