Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Nano Lett ; 24(35): 10980-10986, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39192436

RESUMO

Deflectors are essential for modulating beam direction in optical systems but often face form factor issues or chromatic aberration with conventional optical elements, such as prisms, mirrors, and diffractive/holographic optical elements. Despite recent efforts to address such issues using metasurfaces, their practicality remains limited due to operation wavelengths in the near-infrared or the fabrication difficulties inherent in the multilayer scheme. Here, we propose a novel single-layer metasurface achieving multiwavelength chromatic aberration-free deflection across the visible spectrum by employing the robust freeform design strategy to simplify the fabrication process. By properly selecting diffraction orders for red, green, and blue wavelengths to achieve identical wavelength-diffraction-order products, the metasurface deflects light at a consistent angle of 41.3° with a high efficiency. The coupled Bloch mode analysis explains the physical properties, and experimental fabrication and characterization confirm its effectiveness. This approach holds potential for various applications such as AR/VR, digital cameras, and high-quality optical systems.

2.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400396

RESUMO

Intermediate phase shifting is a footprint- and cost-reduction technique for reconfigurable feed networks. These feed networks are utilized in antenna arrays to perform electrical beam steering. In intermediate phase shifting, a phase shifter is shared between two adjacent antennas. Conventionally, antennas only have individual phase shifters. With shared phase shifters, we reduce the number of components and the footprint by 25%. Consequently, this decreases the price and enables designs at millimeter-wave frequencies where space is limited due to frequency-dependent antenna spacing. This intermediate phase shifting is demonstrated by designing a reconfigurable feed network for the Ka-band that generates a continuous phase shift profile for beam steering. Due to the use of varactors and a novel biasing method, it does not require expensive beamformer integrated chips or lumped components for biasing. The feed network is combined with a 4 × 4 antenna array to demonstrate its beam-steering capabilities. The result is a high-density and minimalistic design that fits in a small volume of 25.6 × 25.6 × 0.95 mm3. With this small antenna array, the main beam is steered at ±40∘ broadside, providing full 1D and restricted 2D steering. It is a potential candidate for wireless sensor and mobile networks.

3.
Sensors (Basel) ; 24(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38544177

RESUMO

LEO satellite constellations can provide a viable alternative to expand connectivity to remote, isolated geographical areas and complement existing IoT terrestrial communication infrastructures. This paper aims to improve LEO satellite communications by implementing a new phased antenna array system that can significantly improve the radio communication link's performance. By adjusting the progressive phase shift to each element of the antenna array system, the direction of the main radiation lobe of the phased antenna array system can be controlled with accuracy. As far as we know, it is the first time that a four-element, three-quarter wavelength phased antenna array system has been successfully realized with the intention of being optimized for implementation in LEO IoT satellite reception systems. The proposed system's high level of performance is confirmed by the measurements, which indicate effective control of the main radiation lobe orientation. The numerical analysis shows a maximum gain close to 12 dBi for about 42° elevation, a Half Power Beamwidth (HPBW) of 32° in the vertical plane, and 80° in the azimuth plane. The experimental measurement results at various main lobe orientation angles revealed an HPBW ranging from 76° to 87° in the azimuth plane and a maximum Front-to-Back ratio (F/B) of 14.5 dB.

4.
Sensors (Basel) ; 24(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065879

RESUMO

Due to the scheme of fixed-platform beam-steering radar and the space of the blast furnace being subjected to harsh environmental influences, the traditional detection methods of burden surface are limited by geometric distortion, noncoherent clutter, and noise interference, which leads to an increase in the image entropy value and the equivalent number of views, makes the density distribution of burden surface show a diffuse state, and greatly affects the stability and accuracy. In this paper, a new fixed-platform beam-steering radar synthetic aperture radar imaging method (FPBS-SAR) is proposed in the sensory domain of the blast furnace environment. From the perspective of fixed-platform beam-steering radar motion characteristics, the target range-azimuth coupled distance history model under the sub-aperture is established, the azimuthal Doppler variation characteristics of the fixed-platform beam-steering process are analyzed, and the compensation function of the transform domain for geometric disturbance correction is proposed. For noncoherent noise suppression in blast furnaces, the trimmed geometric mean-order-likelihood CFAR method is proposed to take into account the information of burden surface and clutter suppression. To verify the method, point target simulation and imaging for the industrial field measurement data are carried out. The results indicate that geometric distortion is well eliminated, the image entropy value and the equivalent number of views have decreased, and noncoherent noise in blast furnaces is suppressed.

5.
Nano Lett ; 23(4): 1355-1362, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36745385

RESUMO

Optical metasurfaces offer unprecedented flexibility in light wave manipulation but suffer weak resonant enhancement. Tackling this problem, we experimentally unveil a new phase gradient metasurface platform made entirely from individually addressable high quality factor (high-Q) silicon meta-atoms. Composed of pairs of nearly identical nanoblocks, these meta-atoms support dipolar-guided-mode resonances that, due to the controlled suppression of radiation loss, serve as highly sensitive phase pixels when placed above a mirror. A key novelty of this platform lies in the vanishingly small structural perturbations needed to produce universal phase fronts. Having fabricated elements with Q-factor ∼380 and spaced by λ/1.2, we achieve strong beam steering, up to 59% efficient, to angles 32.3°, 25.3°, and 20.9°, with variations in nanoantenna volume fractions across the metasurfaces of ≤2.6%, instead of >50% required by traditional versions. Aside from extreme sensitivity, the metasurfaces exhibit near-field intensity enhancement over 1000×. Taken together, these properties represent an exciting prospect for dynamic and nonlinear wave shaping.

6.
Nano Lett ; 23(14): 6768-6775, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37307588

RESUMO

Optical metasurfaces supporting localized resonances have become a versatile platform for shaping the wavefront of light, but their low quality (Q-) factor modes inevitably modify the wavefront over extended momentum and frequency space, resulting in limited spectral and angular control. In contrast, periodic nonlocal metasurfaces have been providing great flexibility for both spectral and angular selectivity but with limited spatial control. Here, we introduce multiresonant nonlocal metasurfaces capable of shaping the spatial properties of light using several resonances with widely disparate Q-factors. In contrast to previous designs, the narrowband resonant transmission punctuates a broadband resonant reflection window enabled by a highly symmetric array, achieving simultaneous spectral filtering and wavefront shaping in the transmission mode. Through rationally designed perturbations, we realize nonlocal flat lenses suitable as compact band-pass imaging devices, ideally suited for microscopy. We further employ modified topology optimization to demonstrate high-quality-factor metagratings for extreme wavefront transformations with large efficiency.

7.
Sensors (Basel) ; 23(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36904760

RESUMO

In this study, a dual-tuned mode of liquid crystal (LC) material was proposed and adopted on reconfigurable metamaterial antennas to expand the fixed-frequency beam-steering range. The novel dual-tuned mode of the LC is composed of double LC layers combined with composite right/left-handed (CRLH) transmission line theory. Through a multi-separated metal layer, the double LC layers can be loaded with controllable bias voltage independently. Therefore, the LC material exhibits four extreme states, among which the permittivity of LC can be varied linearly. On the strength of the dual-tuned mode of LC, a CRLH unit cell is elaborately designed on three-layer substrates with balanced dispersion values under arbitrary LC state. Then five CRLH unit cells are cascaded to form an electronically controlled beam-steering CRLH metamaterial antenna on a downlink Ku satellite communication band with dual-tuned characteristics. The simulated results demonstrate that the metamaterial antenna features' continuous electronic beam-steering capacity from broadside to -35° at 14.4 GHz. Furthermore, the beam-steering properties are implemented in a broad frequency band from 13.8 GHz to 17 GHz, with good impedance matching. The proposed dual-tuned mode can make the regulation of LC material more flexible and enlarge the beam-steering range simultaneously.

8.
Sensors (Basel) ; 23(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36772363

RESUMO

An adjustable 4×4 antenna array with electrical beam steering and polarization control is presented. Here, adjustability means the ability to correct the beam steering angle post-calibration. The objective is to improve the steering accuracy which is critical in point-to-point communication as inaccuracy will cause transmission failure due to a missed target. The accuracy is enhanced by adjusting the beam steering angle in beamforming calculations. To execute this, the system is calibrated by measuring several unit cells of a partial 4×4 array structure at different voltage bias points and calculating an average model of the phase shift profile. This reduces the phase error from variations between components and robust beam steering is achieved. This technique is utilized in far-field measurements, and fairly accurate initial beam steering angles are achieved at 3 GHz. The accuracy is further improved by over or under steering the desired angle in the beamforming calculations to finally achieve the steering angle of interest with an accuracy of 2∘. Overall, the main beam is incrementally steered from 0∘ to 45∘ with the gain ranging from 4.7 dB to 2.8 dB. The polarization control is also demonstrated in horizontal and vertical directions for a linearly polarized wave.

9.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571680

RESUMO

A novel graphene antenna composed of a graphene dipole and four auxiliary graphene sheets oriented at 90∘ to each other is proposed and analyzed. The sheets play the role of reflectors. A detailed group-theoretical analysis of symmetry properties of the discussed antennas has been completed. Through electric field control of the chemical potentials of the graphene elements, the antenna can provide a quasi-omnidirectional diagram, a one- or two-directional beam regime, dynamic control of the beam width and, due to the vertical orientation of the dipole with respect to the base substrate, a 360∘ beam steering in the azimuth plane. An additional graphene layer on the base permits control of the radiation pattern in the θ-direction. Radiation patterns in different working states of the antenna are considered using symmetry arguments. We discuss the antenna parameters such as input reflection coefficient, total efficiency, front-to-back ratio, and gain. An equivalent circuit of the antenna is suggested. The proposed antenna operates at frequencies between 1.75 THz and 2.03 THz. Depending on the active regime defined by the chemical potentials set on the antenna graphene elements, the maximum gain varies from 0.86 to 1.63.

10.
Sensors (Basel) ; 23(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067769

RESUMO

In recent years, the silicon-based optical phased array has been widely used in the field of light detection and ranging (LIDAR) due to its great solid-state steering ability. At the same time, the optical phased array transceiver integration scheme provides a feasible solution for low-cost information exchange of small devices in the future. Based on this, this paper designs a two-dimensional optical phased array transceiver with high efficiency and a large field of view, which can realize a dense array with antenna spacing of 5.5 µm × 5.5 µm by using low crosstalk waveguide wiring. Additionally, it can realize the conversion between the receiving mode and the transmitting mode by using the optical switch. The simulation results show that the scanning range of 16.3° × 16.3° can be achieved in the transmitting mode, and the overall loss is lower than 10dB. In the receiving mode, we can achieve a collection efficiency of more than 27%, and the antenna array receiving loss is lower than 12.1 dB.

11.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896654

RESUMO

In this paper, we propose a reconfigurable intelligent surface (RIS) that can dynamically switch the transmission and reflection phase of incident electromagnetic waves in real time to realize the dual-beam or quad-beam and convert the polarization of the transmitted beam. Such surfaces can redirect a wireless signal at will to establish robust connectivity when the designated line-of-sight channel is disturbed, thereby enhancing the performance of wireless communication systems by creating an intelligent radio environment. When integrated with a sensing element, they are integral to performing joint detection and communication functions in future wireless sensor networks. In this work, we first analyze the scattering performance of a reconfigurable unit element and then design a RIS. The dynamic field scattering manipulation capability of the RIS is validated by full-wave electromagnetic simulations to realize six different functions. The scattering characteristics of the proposed unit element, which incorporates two p-i-n diodes have been substantiated through practical implementation. This involved the construction of a simple prototype and the subsequent examination of its scattering properties via the free-space measurement method. The obtained transmission and reflection coefficients from the measurements are in agreement with the anticipated outcomes from simulations.

12.
Sensors (Basel) ; 23(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37300041

RESUMO

Multiple-input multiple-output (MIMO) wireless power transfer (WPT) technology which employs multiple transmitter (TX) coils to simultaneously couple power to the receiver (RX) coil has proved to be an effective technique to enhance power transfer efficiency (PTE). Conventional MIMO-WPT systems rely on the phase-calculation method based on the phased-array beam steering concept to constructively combine the magnetic fields induced by the multiple TX coils at the RX coil. However, increasing the number and distance of the TX coils in an attempt to enhance the PTE tends to deteriorate the received signal at the RX coil. In this paper, a phase-calculation method is presented that enhances the PTE of the MIMO-WPT system. The proposed phase-calculation method considers the coupling between the coils and applies the phase and amplitude to calculate the coil control data. From the experimental results, the transfer efficiency is enhanced as a result of the transmission coefficient improvement from a minimum of 2 dB to a maximum of 10 dB for the proposed method as compared to the conventional one. By implementing the proposed phase-control MIMO-WPT, high-efficiency wireless charging is realizable wherever electronic devices are located in a specific space.


Assuntos
Próteses e Implantes , Tecnologia sem Fio , Desenho de Equipamento , Campos Magnéticos , Eletrônica , Etoposídeo
13.
Sensors (Basel) ; 23(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36991670

RESUMO

To ensure high-reliability communication in healthcare networks, this paper presents a smart gateway system that includes an angle-of-arrival (AOA) estimation and a beam steering function for a small circular antenna array. To form a beam toward healthcare sensors, the proposed antenna estimates the direction of the sensors utilizing the radio-frequency-based interferometric monopulse technique. The fabricated antenna was assessed based on the measurements of complex directivity and the over-the-air (OTA) testing in Rice propagation environments using a two-dimensional fading emulator. The measurement results reveal that the accuracy of the AOA estimation agrees well with that of the analytical data obtained through the Monte Carlo simulation. This antenna is embedded with a beam steering function employing phased array technology, which can form a beam spaced at 45° intervals. The ability of full-azimuth beam steering with regard to the proposed antenna was evaluated by beam propagation experiments using a human phantom in an indoor environment. The received signal of the proposed antenna with beam steering increases more than that of a conventional dipole antenna, confirming that the developed antenna has great potential of achieving high-reliability communication in a healthcare network.

14.
Nano Lett ; 22(7): 2603-2610, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293750

RESUMO

We report the realization of broadband THz plasmonic metagrating emitters for simultaneous beam steering and all-optical linear polarization control. Two types of metagratings are designed and experimentally demonstrated. First, the plasmonic meta-atoms are arranged in a metagrating with a binary phase modulation which results in the nonlinear generation of THz waves to the ±1 diffraction orders, with complete suppression of the zeroth order. Complete tunability of the diffracted THz linear polarization direction is demonstrated through simple rotation of the pump polarization. Then, the concept of lateral phase shift is introduced into the design of the metagratings using interlaced phase gradients. By controlling the spatial shift of the submetagrating, we are able to continuously control the linear polarization states of the generated THz waves. This method results in a higher nonlinear diffraction efficiency relative to binary phase modulation. These functional THz metagratings show exciting promise to meet the challenges associated with the current diverse array of applications utilizing THz technology.

15.
Nano Lett ; 22(4): 1595-1603, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133850

RESUMO

Optical beam steerers have been widely employed for information acquisitions. Numerous beam steering schemes have been developed, and each of them can satisfy practical requirements for certain scenarios. However, there is still a lack of a comprehensive approach that is able to balance all of the critical technical parameters for wide range of applications. Here, a semisolid micromechanical beam steering system based on micrometa-lens arrays (MMLAs) is demonstrated. It is operated by manipulating the probe beam over two sets of decentered MMLAs potentially driven by high-speed piezo-electric motors. Small f-numbers, well-corrected aberration, and easy lateral reproduction of micrometa-lenses optimize the overall technical parameters. As a proof-of-concept, we implement such a device exhibiting diffraction-limited resolution within a large field of view of 30° × 30°. A three-dimensional depth sensing is also performed to demonstrate its potential in light detection and ranging applications.


Assuntos
Lentes , Desenho de Equipamento , Análise de Falha de Equipamento
16.
Sensors (Basel) ; 22(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214300

RESUMO

Wireless sensor networks (WSN) are increasingly requiring directional antennas that not only provide higher capacity, security, transmission range or robustness against interference, but also contribute with smart antenna capabilities such as adaptive beamforming or multi beam radiation patterns. Standard phased arrays provide these features, but employing feeding networks based on digitally controlled variable phase shifters (VPSs) which have the disadvantage of high cost and limited angular resolution. Instead, time-modulated arrays (TMAs) use switched feeding networks governed by digital periodic sequences which allow harmonic patterns to be radiated and endows (TMAs) with attractive multifunctional capabilities. In this paper, we analyze and properly combine (TMA) switched feeding networks capable of time-modulating an antenna array with discretized amplitude modulation (AM) and phase modulation (PM) waveforms. The advantages of the proposed innovative dual-beam (TMA) with respect to the competing architectures are, on the one hand, its power efficiency and beamsteering (BS) phase sensitivity and, on the other, its hardware simplicity, which allows for an excellent relative cost advantage.

17.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560161

RESUMO

The multi-angle Doppler method was introduced for the estimation of velocity vectors by measuring axial velocities from multiple directions. We have recently reported that the autocorrelation-based velocity vector estimation could be ameliorated significantly by estimating the wavenumbers in two dimensions. Since two-dimensional wavenumber estimation requires a snapshot of an ultrasonic field, the method was first implemented in plane wave imaging. Although plane wave imaging is predominantly useful for examining blood flows at an extremely high temporal resolution, it was reported that the contrast in a B-mode image obtained with a few plane wave emissions was lower than that obtained with focused beams. In this study, the two-dimensional wavenumber analysis was first implemented in a framework with focused transmit beams. The simulations showed that the proposed method achieved an accuracy in velocity estimation comparable to that of the method with plane wave imaging. Furthermore, the performances of the methods implemented in focused beam and plane wave imaging were compared by measuring human common carotid arteries in vivo. Image contrasts were analyzed in normal and clutter-filtered B-mode images. The method with focused beam imaging achieved a better contrast in normal B-mode imaging, and similar velocity magnitudes and angles were obtained by both the methods with focused beam and plane wave imaging. In contrast, the method with plane wave imaging gave a better contrast in a clutter-filtered B-mode image and smaller variances in velocity magnitudes than those with focused beams.


Assuntos
Ultrassom , Ultrassonografia Doppler , Humanos , Velocidade do Fluxo Sanguíneo , Ultrassonografia/métodos , Ultrassonografia Doppler/métodos , Angiografia , Imagens de Fantasmas
18.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015897

RESUMO

Light detection and ranging systems based on optical phased arrays and integrated silicon photonics have sparked a surge of applications over the recent years. This includes applications in sensing, free-space communications, or autonomous vehicles, to name a few. Herein, we report a design of two-dimensional optical phased arrays, which are arranged in a grid of concentric rings. We numerically investigate two designs composed of 110 and 820 elements, respectively. Both single-wavelength (1550 nm) and broadband multi-wavelength (1535 nm to 1565 nm) operations are studied. The proposed phased arrays enable free-space beam steering, offering improved performance with narrow beam divergences of only 0.5° and 0.22° for the 110-element and 820-element arrays, respectively, with a main-to-sidelobe suppression ratio higher than 10 dB. The circular array topology also allows large element spacing far beyond the sub-wavelength-scaled limits that are present in one-dimensional linear or two-dimensional rectangular arrays. Under a single-wavelength operation, a solid-angle steering between 0.21π sr and 0.51π sr is obtained for 110- and 820-element arrays, respectively, while the beam steering spans the range of 0.24π sr and 0.57π sr for a multi-wavelength operation. This work opens new opportunities for future optical phased arrays in on-chip photonic applications, in which fast, high-resolution, and broadband beam steering is necessary.

19.
Nano Lett ; 21(1): 330-336, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33337884

RESUMO

Optical metasurfaces have emerged as promising candidates for multifunctional devices. Dynamically reconfigurable metasurfaces have been introduced by employing phase-change materials or by applying voltage, heat, or strain. While existing metasurfaces exhibit appealing properties, they do not express any significant nonlinear effects due to the negligible nonlinear responses from the typical materials used to build the metasurface. In this work, we propose and experimentally demonstrate one kind of Kerr metasurface that shows strong intensity-dependent responses. The Kerr metasurface is composed of a top layer of gold antennas, a dielectric spacer, and a ground layer of metallic quantum wells (MQWs). Because of the large Kerr nonlinearity supported by the MQWs, the effective optical properties of the MQWs can change from metallic to dielectric with increasing of the input intensity, leading to dramatic modifications of the metasurface responses. This opens up new routes for potential applications in the field of nonlinear optics.

20.
Nano Lett ; 21(12): 4981-4989, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110156

RESUMO

We introduce a genetic-type tree search (GTTS) algorithm combined with unsupervised clustering for the automatic inverse design of high-performance metasurfaces. With the proposed method, we realize highly directive beam-steering metasurfaces via the cooptimization of the amplitude and phase. In comparison with previous topology optimization approaches, the developed GTTS algorithm optimizes the organization of subwavelength nanoantennas and, thus, is applicable to the design of both passive and active metasurfaces. The optimized beam-steering metasurface specifically exhibits a nearly constant directivity when the steering angle varies from 5° to 30°. Furthermore, the optimized nonintuitive reflectance and phase profiles assist in achieving highly directive beam steering when the phase modulation range is <180°, which was previously challenging. Our approach can diminish the requirements of scattering light properties with substantially enhanced angular resolution of beam-steering metasurfaces, which enables the realization of high-performance metasurfaces that will be promising for a wide range of advanced nanophotonic applications.


Assuntos
Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA