RESUMO
Vibration monitoring is one of the most effective approaches for bearing fault diagnosis. Within this category of techniques, sparsity constraint-based regularization has received considerable attention for its capability to accurately extract repetitive transients from noisy vibration signals. The optimal solution of a sparse regularization problem is determined by the regularization term and the data fitting term in the cost function according to their weights, so a tradeoff between sparsity and data fidelity has to be made inevitably, which restricts conventional regularization methods from maintaining strong sparsity-promoting capability and high fitting accuracy at the same time. To address the limitation, a stepwise sparse regularization (SSR) method with an adaptive sparse dictionary is proposed. In this method, the bearing fault diagnosis is modeled as a multi-parameter optimization problem, including time indexes of the sparse dictionary and sparse coefficients. Firstly, sparsity-enhanced optimization is conducted by amplifying the regularization parameter, making the time indexes and the number of atoms adaptively converge to the moments when impulses occur and the number of impulses, respectively. Then, fidelity-enhanced optimization is carried out by removing the regularization term, thereby obtaining the high-precision reconstruction amplitudes. Simulations and experiments verify that the reconstruction accuracy of the SSR method outperforms other sparse regularization methods under most noise conditions, and thus the proposed method can provide more accurate results for bearing fault diagnosis.
RESUMO
Domain adaptation techniques are crucial for addressing the discrepancies between training and testing data distributions caused by varying operational conditions in practical bearing fault diagnosis. However, transfer fault diagnosis faces significant challenges under complex conditions with dispersed data and distinct distribution differences. Hence, this paper proposes CWT-SimAM-DAMS, a domain adaptation method for bearing fault diagnosis based on SimAM and an adaptive weighting strategy. The proposed scheme first uses Continuous Wavelet Transform (CWT) and Unsharp Masking (USM) for data preprocessing, and then feature extraction is performed using the Residual Network (ResNet) integrated with the SimAM module. This is combined with the proposed adaptive weighting strategy based on Joint Maximum Mean Discrepancy (JMMD) and Conditional Adversarial Domain Adaption Network (CDAN) domain adaptation algorithms, which minimizes the distribution differences between the source and target domains more effectively, thus enhancing domain adaptability. The proposed method is validated on two datasets, and experimental results show that it improves the accuracy of bearing fault diagnosis.
RESUMO
Rolling bearing is the core component of industrial machines, but it is difficult for common single signal source-based fault diagnosis methods to ensure reliable results since sensor signals are vulnerable to the pollution of background noises and the attenuation of transmitted information. Recently, multi-source information-based fault diagnosis methods have become popular, but the information redundancy between multiple signals is a tough problem that will negatively impact the representational capacity of deep learning algorithms and the precision of fault diagnosis methods. Besides that, the characteristics of various signals are actually different, but this problem was usually omitted by researchers, and it has potential to further improve the diagnosing performance by adaptively adjusting the feature extraction process for every input signal source. Aimed at solving the above problems, a novel model for bearing fault diagnosis called multi-branch selective fusion deep residual network is proposed in this paper. The model adopts a multi-branch structure design to enable every input signal source to have a unique feature processing channel, avoiding the information of multiple signal sources blindly coupled by convolution kernels. And in each branch, different convolution kernel sizes are assigned according to the characteristics of every input signal, fully digging the precious fault components on respective information sources. Lastly, the dropout technique is used to randomly throw out some activated neurons, alleviating the redundancy and enhancing the quality of the multiscale features extracted from different signals. The proposed method was experimentally compared with other intelligent methods on two authoritative public bearing datasets, and the experimental results prove the feasibility and superiority of the proposed model.
RESUMO
Regarding the difficulty of extracting the acquired fault signal features of bearings from a strong background noise vibration signal, coupled with the fact that one-dimensional (1D) signals provide limited fault information, an optimal time frequency fusion symmetric dot pattern (SDP) bearing fault feature enhancement and diagnosis method is proposed. Firstly, the vibration signals are transformed into two-dimensional (2D) features by the time frequency fusion algorithm SDP, which can multi-scale analyze the fluctuations of signals at minor scales, as well as enhance bearing fault features. Secondly, the bat algorithm is employed to optimize the SDP parameters adaptively. It can effectively improve the distinctions between various types of faults. Finally, the fault diagnosis model can be constructed by a deep convolutional neural network (DCNN). To validate the effectiveness of the proposed method, Case Western Reserve University's (CWRU) bearing fault dataset and bearing fault dataset laboratory experimental platform were used. The experimental results illustrate that the fault diagnosis accuracy of the proposed method is 100%, which proves the feasibility and effectiveness of the proposed method. By comparing with other 2D transformer methods, the experimental results illustrate that the proposed method achieves the highest accuracy in bearing fault diagnosis. It validated the superiority of the proposed methodology.
RESUMO
The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturing processes. Bearings provide accurate and smooth movements and play essential roles in mechanical equipment with shafts. Given their importance, bearing failure diagnosis has been extensively studied. However, the imbalance in failure data and the complexity of time series data make diagnosis challenging. Conventional AI models (convolutional neural networks (CNNs), long short-term memory (LSTM), support vector machine (SVM), and extreme gradient boosting (XGBoost)) face limitations in diagnosing such failures. To address this problem, this paper proposes a bearing failure diagnosis model using a graph convolution network (GCN)-based LSTM autoencoder with self-attention. The model was trained on data extracted from the Case Western Reserve University (CWRU) dataset and a fault simulator testbed. The proposed model achieved 97.3% accuracy on the CWRU dataset and 99.9% accuracy on the fault simulator dataset.
RESUMO
Vibration signal analysis is an important means for bearing fault diagnosis. Affected by the vibration of other machine parts, external noise and the vibration transmission path, the impulses induced by a bearing defect in the measured vibrations are very weak. Blind deconvolution (BD) methods can counteract the effect of the transmission path and enhance the fault impulses. Most BD methods highlight fault features of the filtered signals by impulse-featured objective functions (OFs). However, residual noise in the filtered signals has not been well tackled. To overcome this problem, a fuzzy entropy-assisted deconvolution (FEAD) method is proposed. First, FEAD takes advantage of the high noise sensitivity of fuzzy entropy (FuzzyEn) and constructs a weighted FuzzyEn-kurtosis OF to enhance the fault impulses while suppressing noise interference. Then, the PSO algorithm is used to iteratively solve the optimal inverse deconvolution filter. Finally, envelope spectrum analysis is performed on the filtered signal to realize bearing fault diagnosis. The feasibility of FEAD was first verified by the bearing fault simulation signals at constant and variable speeds. The bearing test signals from Case Western Reserve University (CWRU), the railway wheelset and the test bench validated the good performance of FEAD in fault feature enhancement. A comparison with and quantitative results for the other state-of-the-art BD methods indicated the superiority of the proposed method.
RESUMO
Although traditional fault diagnosis methods are proficient in extracting signal features, their diagnostic interpretability remains challenging. Consequently, this article proposes a conditionally interpretable generative adversarial network (C-InGAN) model for the interpretable feature fault diagnosis of bearings. Initially, the vibration signal is denoised and transformed into a frequency domain signal. The model consists of the two primary networks, each employing a convolutional layer and an attention module, generator (G) and discriminator (D), respectively. Latent code was incorporated into G to constrain the generated samples, and a discriminant layer was added to D to identify the interpretable features. During training, the two networks were alternately trained, and the feature mapping relationship of the pre-normalized encoder was learned by maximizing the information from the latent code and the discriminative result. The encoding that represents specific features in the vibration signal was extracted from the random noise. Ultimately, after completing adversarial learning, G is capable of generating a simulated signal of the specified feature, and D can assess the interpretable features in the vibration signal. The effectiveness of the model is validated through three typical experimental cases. This method effectively separates the discrete and continuous feature coding in the signal.
RESUMO
In this work, we present a diagnosis system for rolling bearings that leverages simultaneous measurements of vibrations and machine rotation speed. Our approach combines the robustness of simple time domain methods for fault detection with the potential of machine learning techniques for fault location. This research is based on a neural network classifier, which exploits a simple and novel preprocessing algorithm specifically designed for minimizing the dependency of the classifier performance on the machine working conditions, on the bearing model and on the acquisition system set-up. The overall diagnosis system is based on light algorithms with reduced complexity and hardware resource demand and is designed to be deployed in embedded electronics. The fault diagnosis system was trained using emulated data, exploiting an ad-hoc test bench thus avoiding the problem of generating enough data, achieving an overall classifier accuracy larger than 98%. Its noteworthy ability to generalize was proven by using data emulating different working conditions and acquisition set-ups and noise levels, obtaining in all the cases accuracies greater than 97%, thereby proving in this way that the proposed system can be applied in a wide spectrum of different applications. Finally, real data from an on-line database containing vibration signals obtained in a completely different scenario are used to demonstrate the distinctive capability of the proposed system to generalize.
RESUMO
It is essential to accurately diagnose bearing faults to avoid property losses or casualties in the industry caused by motor failures. Recently, the methods of fault diagnosis for bearings using deep learning methods have improved the safety of motor operations in a reliable and intelligent way. However, most of the work is mainly suitable for situations where there is sufficient monitoring data of the bearings. In industrial systems, only a small amount of monitoring data can be collected by the bearing sensors due to the harsh monitoring conditions and the short time of the signals of some special motor bearings. To solve the issue above, this paper introduces a transfer learning strategy by focusing on the multi-local model bearing fault based on small sample fusion. The algorithm mainly includes the following steps: (1) constructing a parallel Bi-LSTM sub-network to extract features from bearing vibration and current signals of industrial motor bearings, serially fusing the extracted vibration and current signal features for fault classification, and using them as a source domain fault diagnosis model; (2) measuring the distribution difference between the source domain bearing data and the target bearing data using the maximum mean difference algorithm; (3) based on the distribution differences between the source domain and the target domain, transferring the network parameters of the source domain fault diagnosis model, fine-tuning the network structure of the source domain fault diagnosis model, and obtaining the target domain fault diagnosis model. A performance evaluation reveals that a higher fault diagnosis accuracy under small sample fusion can be maintained by the proposed method compared to other methods. In addition, the early training time of the fault diagnosis model can be reduced, and its generalization ability can be improved to a great extent. Specifically, the fault diagnosis accuracy can be improved to higher than 80% while the training time can be reduced to 15.3% by using the proposed method.
RESUMO
Bearing defects are a common problem in rotating machines and equipment that can lead to unexpected downtime, costly repairs, and even safety hazards. Diagnosing bearing defects is crucial for preventative maintenance, and deep learning models have shown promising results in this field. On the other hand, the high complexity of these models can lead to high computational and data processing costs, making their practical implementation challenging. Recent studies have focused on optimizing these models by reducing their size and complexity, but these methods often compromise classification performance. This paper proposes a new approach that reduces the dimensionality of input data and optimizes the model structure simultaneously. A much lower input data dimension than that of existing deep learning models was achieved by downsampling the vibration sensor signals used for bearing defect diagnosis and constructing spectrograms. This paper introduces a lite convolutional neural network (CNN) model with fixed feature map dimensions that achieve high classification accuracy with low-dimensional input data. The vibration sensor signals used for bearing defect diagnosis were first downsampled to reduce the dimensionality of the input data. Next, spectrograms were constructed using the signals of the minimum interval. Experiments were conducted using the vibration sensor signals from the Case Western Reserve University (CWRU) dataset. The experimental results show that the proposed method could be highly efficient in terms of computation while maintaining outstanding classification performance. The results show that the proposed method outperformed a state-of-the-art model for bearing defect diagnosis under different conditions. This approach is not limited to the field of bearing failure diagnosis, but could be applied potentially to other fields that require the analysis of high-dimensional time series data.
RESUMO
Recently, deep learning has become more and more extensive in the field of fault diagnosis. However, most deep learning methods rely on large amounts of labeled data to train the model, which leads to their poor generalized ability in the application of different scenarios. To overcome this deficiency, this paper proposes a novel generalized model based on self-supervised learning and sparse filtering (GSLSF). The proposed method includes two stages. Firstly (1), considering the representation of samples on fault and working condition information, designing self-supervised learning pretext tasks and pseudo-labels, and establishing a pre-trained model based on sparse filtering. Secondly (2), a knowledge transfer mechanism from the pre-training model to the target task is established, the fault features of the deep representation are extracted based on the sparse filtering model, and softmax regression is applied to distinguish the type of failure. This method can observably enhance the model's diagnostic performance and generalization ability with limited training data. The validity of the method is proved by the fault diagnosis results of two bearing datasets.
RESUMO
Rolling element bearing (REB) vibration signals under variable speed (VS) have non-stationary characteristics. Order tracking (OT) and time-frequency analysis (TFA) are two widely used methods for REB fault diagnosis under VS. However, the effect of OT methods is affected by resampling errors and close-order harmonic interference, while the accuracy of TFA methods is mainly limited by time-frequency resolution and ridge extraction algorithms. To address this issue, a novel method based on envelope spectrum fault characteristic frequency band identification (FCFBI) is proposed. Firstly, the characteristics of the bearing fault vibration signal's envelope spectrum under VS are analyzed in detail and the fault characteristic frequency band (FCFB) is introduced as a new and effective representation of faults. Then, fault templates based on FCFB are constructed as reference for fault identification. Finally, based on the calculation of the correlation coefficients between the envelope spectrum and fault templates in the extended FCFB, the bearing fault can be diagnosed automatically according to the preset correlation coefficient criterion. Two bearing VS experiments indicate that the proposed method can achieve satisfactory diagnostic accuracy. The comparison of OT and TFA methods further demonstrates the comprehensive superiority of the proposed method in the overall consideration of accuracy, diagnostic time, tachometer dependency, and automatic degree.
RESUMO
In this paper, a quadratic convolution neural network (QCNN) using both audio and vibration signals is utilized for bearing fault diagnosis. Specifically, to make use of multi-modal information for bearing fault diagnosis, the audio and vibration signals are first fused together using a 1 × 1 convolution. Then, a quadratic convolution neural network is applied for the fusion feature extraction. Finally, a decision module is designed for fault classification. The proposed method utilizes the complementary information of audio and vibration signals, and is insensitive to noise. The experimental results show that the accuracy of the proposed method can achieve high accuracies for both single and multiple bearing fault diagnosis in the noisy situations. Moreover, the combination of two-modal data helps improve the performance under all conditions.
RESUMO
The utilization of multiscale entropy methods to characterize vibration signals has proven to be promising in intelligent diagnosis of mechanical equipment. However, in the current multiscale entropy methods, only the information in the low-frequency range is utilized and the information in the high-frequency range is discarded. In order to take full advantage of the information, in this paper, a fault feature extraction method utilizing the bidirectional composite coarse-graining process with fuzzy dispersion entropy is proposed. To avoid the redundancy of the full frequency range feature information, the Random Forest algorithm combined with the Maximum Relevance Minimum Redundancy algorithm is applied to feature selection. Together with the K-nearest neighbor classifier, a rolling bearing intelligent diagnosis framework is constructed. The effectiveness of the proposed framework is evaluated by a numerical simulation and two experimental examples. The validation results demonstrate that the extracted features by the proposed method are highly sensitive to the bearing health conditions compared with hierarchical fuzzy dispersion entropy, composite multiscale fuzzy dispersion entropy, multiscale fuzzy dispersion entropy, multiscale dispersion entropy, multiscale permutation entropy, and multiscale sample entropy. In addition, the proposed method is able to identify the fault categories and health states of rolling bearings simultaneously. The proposed damage detection methodology provides a new and better framework for intelligent fault diagnosis of rolling bearings in rotating machinery.
RESUMO
This paper proposes a noise-robust and accurate bearing fault diagnosis model based on time-frequency multi-domain 1D convolutional neural networks (CNNs) with attention modules. The proposed model, referred to as the TF-MDA model, is designed for an accurate bearing fault classification model based on vibration sensor signals that can be implemented at industry sites under a high-noise environment. Previous 1D CNN-based bearing diagnosis models are mostly based on either time domain vibration signals or frequency domain spectral signals. In contrast, our model has parallel 1D CNN modules that simultaneously extract features from both the time and frequency domains. These multi-domain features are then fused to capture comprehensive information on bearing fault signals. Additionally, physics-informed preprocessings are incorporated into the frequency-spectral signals to further improve the classification accuracy. Furthermore, a channel and spatial attention module is added to effectively enhance the noise-robustness by focusing more on the fault characteristic features. Experiments were conducted using public bearing datasets, and the results indicated that the proposed model outperformed similar diagnosis models on a range of noise levels ranging from -6 to 6 dB signal-to-noise ratio (SNR).
RESUMO
This study proposes a high-efficiency method using a co-prime circular microphone array (CPCMA) for the bearing fault diagnosis, and discusses the acoustic characteristics of three fault-type signals at different rotation speeds. Due to the close positions of various bearing components, radiation sounds are seriously mixed, and it is challenging to separate the fault features. Direction-of-arrival (DOA) estimation can be used to suppress noise and directionally enhance sound sources of interest; however, classical array configurations usually require a large number of microphones to achieve high accuracy. To address this, a CPCMA is introduced to raise the array's degrees of freedom in order to reduce the dependence on the microphone numbers and computation complexity. The estimation of signal parameters via rotational invariance techniques (ESPRIT) applied to a CPCMA can quickly figure out the DOA estimation without any prior knowledge. By using the techniques above, a sound source motion-tracking diagnosis method is proposed according to the movement characteristics of impact sound sources for each fault type. Additionally, more precise frequency spectra are obtained, which are used in combination to determine the fault types and locations.
RESUMO
In this study, bearing fault diagnosis is performed with a small amount of data through few-shot learning. Recently, a fault diagnosis method based on deep learning has achieved promising results. Most studies required numerous training samples for fault diagnosis. However, at manufacturing sites, it is impossible to have enough training samples to represent all fault types under all operating conditions. In addition, most studies consider only accuracy, and models are complex and computationally expensive. Research that only considers accuracy is inefficient since manufacturing sites change rapidly. Therefore, in this study, we propose a few-shot learning model that can effectively learn with small data. In addition, a Depthwise Separable Convolution layer that can effectively reduce parameters is used together. In order to find an efficient model, the optimal hyperparameters were found by adjusting the number of blocks and hyperparameters, and by using a Depthwise Separable Convolution layer for the optimal hyperparameters, it showed higher accuracy and fewer parameters than the existing model.
RESUMO
In bearing fault diagnosis, machine learning methods have been proven effective on the basis of the heterogeneous features extracted from multiple domains, including deep representation features. However, comparatively little research has been performed on fusing these multi-domain heterogeneous features while dealing with the interrelation and redundant problems to precisely discover the bearing faults. Thus, in the current study, a novel diagnostic method, namely the method of incorporating heterogeneous representative features into the random subspace, or IHF-RS, is proposed for accurate bearing fault diagnosis. Primarily, via signal processing methods, statistical features are extracted, and via the deep stack autoencoder (DSAE), deep representation features are acquired. Next, considering the different levels of predictive power of features, a modified lasso method incorporating the random subspace method is introduced to measure the features and produce better base classifiers. Finally, the majority voting strategy is applied to aggregate the outputs of these various base classifiers to enhance the diagnostic performance of the bearing fault. For the proposed method's validity, two bearing datasets provided by the Case Western Reserve University Bearing Data Center and Paderborn University were utilized for the experiments. The results of the experiment revealed that in bearing fault diagnosis, the proposed method of IHF-RS can be successfully utilized.
RESUMO
The engineering challenge of rolling bearing condition monitoring has led to a large number of method developments over the past few years. Most commonly, vibration measurement data are used for fault diagnosis using machine learning algorithms. In current research, purely data-driven deep learning methods are becoming increasingly popular, aiming for accurate predictions of bearing faults without requiring bearing-specific domain knowledge. Opposing this trend in popularity, the present paper takes a more traditional approach, incorporating domain knowledge by evaluating a variety of feature engineering methods in combination with a random forest classifier. For a comprehensive feature engineering study, a total of 42 mathematical feature formulas are combined with the preprocessing methods of envelope analysis, empirical mode decomposition, wavelet transforms, and frequency band separations. While each single processing method and feature formula is known from the literature, the presented paper contributes to the body of knowledge by investigating novel series connections of processing methods and feature formulas. Using the CWRU bearing fault data for performance evaluation, feature calculation based on the processing method of frequency band separation leads to particularly high prediction accuracies, while at the same time being very efficient in terms of low computational effort. Additionally, in comparison with deep learning approaches, the proposed feature engineering method provides excellent accuracies and enables explainability.
RESUMO
Rotary machines often exhibit nonlinear behavior due to factors such as nonlinear stiffness, damping, friction, coupling effects, and defects. Consequently, their vibration signals display nonlinear characteristics. Entropy techniques prove to be effective in detecting these nonlinear dynamic characteristics. Recently, an approach called fuzzy dispersion entropy (DE-FDE) was introduced to quantify the uncertainty of time series. FDE, rooted in dispersion patterns and fuzzy set theory, addresses the sensitivity of DE to its parameters. However, FDE does not adequately account for the presence of multiple time scales inherent in signals. To address this limitation, the concept of multiscale fuzzy dispersion entropy (MFDE) was developed to capture the dynamical variability of time series across various scales of complexity. Compared to multiscale DE (MDE), MFDE exhibits reduced sensitivity to noise and higher stability. In order to enhance the stability of MFDE, we propose a refined composite MFDE (RCMFDE). In comparison with MFDE, MDE, and RCMDE, RCMFDE's performance is assessed using synthetic signals and three real bearing datasets. The results consistently demonstrate the superiority of RCMFDE in detecting various patterns within synthetic and real bearing fault data. Importantly, classifiers built upon RCMFDE achieve notably high accuracy values for bearing fault diagnosis applications, outperforming classifiers based on refined composite multiscale dispersion and sample entropy methods.