Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758966

RESUMO

Apiculate yeasts belonging to the genus Hanseniaspora are predominant on grapes and other fruits. While some species, such as Hanseniaspora uvarum, are well known for their abundant presence in fruits, they are generally characterized by their detrimental effect on fermentation quality because the excessive production of acetic acid. However, the species Hanseniaspora vineae is adapted to fermentation and currently is considered as an enhancer of positive flavour and sensory complexity in foods. Since 2002, we have been isolating strains from this species and conducting winemaking processes with them. In parallel, we also characterized this species from genes to metabolites. In 2013, we sequenced the genomes of two H. vineae strains, being these the first apiculate yeast genomes determined. In the last 10 years, it has become possible to understand its biology, discovering very peculiar features compared to the conventional Saccharomyces yeasts, such as a natural and unique G2 cell cycle arrest or the elucidation of the mandelate pathway for benzenoids synthesis. All these characteristics contribute to phenotypes with proved interest from the biotechnological point of view for winemaking and the production of other foods.


Assuntos
Hanseniaspora , Vinho , Hanseniaspora/genética , Fermentação , Vinho/análise , Leveduras/genética , Biologia
2.
Molecules ; 28(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005295

RESUMO

Aniba canelilla (Kunth) Mez essential oil has many biological activities due to its main compound 1-nitro-2-phenylethane (1N2F), followed by methyleugenol, a carcinogenic agent. This study analyzed the influence of seasonality on yields, antioxidant capacity, and 1N2F content of A. canelilla leaf and twig essential oils. Essential oils (EOs) were extracted with hydrodistillation and analyzed with gas chromatography coupled to mass spectrometry and a flame ionization detector. Antioxidant capacity was measured using the free radical scavenging method (DPPH). Chemometric analyses were carried out to verify the influence of climatic factors on the production and composition of EOs. 1-Nitro-2-phenylethane was the major constituent in A. canelilla EOs throughout the seasonal period (68.0-89.9%); methyleugenol was not detected. Essential oil yields and the 1N2F average did not show a statistically significant difference between the dry and rainy seasons in leaves and twigs. Moderate and significant correlations between major compounds and climate factor were observed. The twig oils (36.0 ± 5.9%) a showed greater antioxidant capacity than the leaf oils (20.4 ± 5.0%). The PCA and HCA analyses showed no statistical differences between the oil samples from the dry and rainy seasons. The absence of methyleugenolin in all months of study, described for the first time, makes this specimen a reliable source of 1N2F.


Assuntos
Lauraceae , Óleos Voláteis , Óleos Voláteis/química , Lauraceae/química , Estações do Ano , Antioxidantes/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Folhas de Planta
3.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138428

RESUMO

Lily is one of the most important cut flowers in the world, with a rich floral fragrance. To further explore the fragrance emission mechanisms of lily cultivars, headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and organic solvent extraction-gas chromatography-mass spectrometry (OSE-GC-MS) were used to unveil the volatile organic compounds (VOCs) and endogenous extracts of seven lily cultivars. Furthermore, real-time quantitative PCR (qRT-PCR) was used to determine the expression levels of two key genes (TPS and BSMT) related to the biosynthesis of monoterpenoids and methyl benzoate. The results show that forty-five VOCs were detected in the petals of seven lily cultivars, and the main compounds were monoterpenoids and phenylpropanoids/benzenoids. Dichloromethane was the best solvent for extracting the endogenous extracts of Lilium 'Viviana' petals and eighteen endogenous extracts were detected using dichloromethane to extract the petals of seven lily cultivars. Each compound's emission ratio (natural logarithm of the ratio of VOC content to endogenous extract content) was calculated, and linear regression analyses between emission ratios and boiling points were conducted. Significant linear negative correlations existed between the emission ratios and boiling points of compounds, and the regression equations' coefficients of determination (R2) were all greater than 0.7. TPS was expressed highly in 'Viviana', 'Pink News', and 'Palazzo', and BSMT was expressed highly in 'Pink News' and 'Palazzo'. Correlation analyses between the gene expression levels and the monoterpenoids and methyl benzoate contents found that the TPS expression levels have strong positive correlations with monoterpenoids content, while no correlations were found between the expression levels of BSMT and the contents of methyl benzoate. This study lays the foundation for research on the release patterns of VOCs in the flowers of Lilium, and the breeding of lilies for their floral fragrance.


Assuntos
Lilium , Compostos Orgânicos Voláteis , Lilium/genética , Compostos Orgânicos Voláteis/análise , Cloreto de Metileno , Melhoramento Vegetal , Flores/química , Microextração em Fase Sólida , Solventes/análise , Monoterpenos/análise
4.
Oecologia ; 199(1): 53-68, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35471619

RESUMO

Heat stress is one of the most important abiotic stresses confronted by plants under global climate change. Plant exposure to abiotic or biotic stress can improve its tolerance to subsequent severe episodes of the same or different stress (stress priming), but so far there is limited comparative information about how pre-exposures to different abiotic and biotic elicitors alter plant resistance to severe heat stress. We exposed the perennial herb Melilotus albus Medik., a species rich in secondary metabolites, to moderate heat stress (35 °C) and greenhouse whitefly (Trialeurodes vaporariorum West.) infestation to comparatively determine whether both pre-treatments could enhance plant tolerance to the subsequent heat shock (45 °C) stress. Plant physiological responses to stress were characterized by photosynthetic traits and volatile organic compound emissions through 72 h recovery. Heat shock treatment reduced net assimilation rate (A) and stomatal conductance in all plants, but heat-primed plants had significantly faster rates of recovery of A than other plants. By the end of the recovery period, A in none of the three heat shock-stressed groups recovered to the control level, but in whitefly-infested plants it reached the pre-heat shock level. In heat-primed plants, the heat shock treatment was associated with a fast rise of monoterpene emissions, and in whitefly-infested plants with benzenoid emissions and an increase in total phenolic content.


Assuntos
Hemípteros , Compostos Orgânicos Voláteis , Animais , Resposta ao Choque Térmico/fisiologia , Hemípteros/metabolismo , Fotossíntese/fisiologia , Estresse Fisiológico
5.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887360

RESUMO

Floral scents possess high ornamental and economic values to rose production in the floricultural industry. In the past two decades, molecular bases of floral scent production have been studied in the rose as well as their genetic inheritance. Some significant achievements have been acquired, such as the comprehensive rose genome and the finding of a novel geraniol synthase in plants. In this review, we summarize the composition of floral scents in modern roses, focusing on the recent advances in the molecular mechanisms of floral scent production and emission, as well as the latest developments in molecular breeding and metabolic engineering of rose scents. It could provide useful information for both studying and improving the floral scent production in the rose.


Assuntos
Odorantes , Rosa , Bases de Dados Genéticas , Flores/metabolismo , Feromônios/metabolismo , Rosa/genética , Rosa/metabolismo
6.
Molecules ; 27(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364159

RESUMO

Cinnamomum verum (Lauraceae), also known as "true cinnamon" or "Ceylon cinnamon" has been widely used in traditional folk medicine and cuisine for a long time. The systematics of C. verum presents some difficulties due to genetic variation and morphological similarity between other Cinnamomum species. The present work aimed to find chemical and molecular markers of C. verum samples from the Amazon region of Brazil. The leaf EOs and the genetic material (DNA) were extracted from samples cultivated and commercial samples. The chemical composition of the essential oils from samples of C. verum cultivated (Cve1-Cve5) and commercial (Cve6-c-Cv9-c) was grouped by multivariate statistical analysis of Principal Component Analysis (PCA). The major compounds were rich in benzenoids and phenylpropanoids, such as eugenol (0.7-91.0%), benzyl benzoate (0.28-76.51%), (E)-cinnamyl acetate (0.36-32.1%), and (E)-cinnamaldehyde (1.0-19.73%). DNA barcodes were developed for phylogenetic analysis using the chloroplastic regions of the matK and rbcL genes, and psbA-trnH intergenic spacer. The psbA-trnH sequences provided greater diversity of nucleotides, and matK confirmed the identity of C. verum. The combination of DNA barcode and volatile profile was found to be an important tool for the discrimination of C. verum varieties and to examine the authenticity of industrial sources.


Assuntos
Cinnamomum , Óleos Voláteis , Óleos Voláteis/química , Cinnamomum zeylanicum/química , Filogenia , Cinnamomum/genética , Cinnamomum/química , Folhas de Planta/genética , Folhas de Planta/química , Código de Barras de DNA Taxonômico
7.
Sensors (Basel) ; 21(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833651

RESUMO

The presence of benzene and similar aromatic compounds in civil environments is due to anthropic actions but also to natural sources. Natural gas consists of a gas mixture where benzene and related compounds are usually presents. Thus, the detection of these compounds in natural gas pipelines is of the utmost importance as well as the control of the concentration level, which must remain below the limits consented by law. In this regard, it is of striking interest to engineer devices able to detect these compounds by automatic and continuous remote control. Here, we discuss the application of an optical device designed for the measurement of sulfured odorizing agents in natural gas pipelines aiming at the detection and the measurement of benzene, toluene, and xylenes (BTX) in the same contexts. The instrument consists of a customized UV spectrophotometer connected to an automatic control system able to provide in-field detections of BTX through a continuous and remote check of the gaseous mixture. Relatively to benzene, the instrument is characterized by values of LOD (level of detection) and LOQ (level of quantification) equal to 0.55 and 1.84 mg/Sm3, respectively. Similar limits are found for toluene and xylenes (LOD of 0.81, 1.05, 1.41, and 1.00 mg/Sm3 for toluene, meta-, ortho-, and para-xylene, respectively).


Assuntos
Benzeno , Gás Natural , Benzeno/análise , Derivados de Benzeno , Tolueno/análise , Xilenos
8.
Molecules ; 26(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805452

RESUMO

Lauraceae species are widely represented in the Amazon, presenting a significant essential oil yield, large chemical variability, various biological applications, and high economic potential. Its taxonomic classification is difficult due to the accentuated morphological uniformity, even among taxa from a different genus. For this reason, the present work aimed to find chemical and molecular markers to discriminate Aniba species collected in the Pará State (Brazil). The chemical composition of the essential oils from Aniba canelilla, A. parviflora, A. rosaeodora, and A. terminalis were grouped by multivariate statistical analysis. The major compounds were rich in benzenoids and terpenoids such as 1-nitro-2-phenylethane (88.34-70.85%), linalool (15.2-75.3%), α-phellandrene (36.0-51.8%), and ß-phellandrene (11.6-25.6%). DNA barcodes were developed using the internal transcribed spacer (ITS) nuclear region, and the matK, psbA-trnH, rbcL, and ycf1 plastid regions. The markers psbA-trnH and ITS showed the best discrimination for the species, and the phylogenic analysis in the three- (rbcL + matK + trnH - psbA and rbcL + matK + ITS) and four-locus (rbcL + matK + trnH - psbA + ITS) combination formed clades with groups strongly supported by the Bayesian inference (BI) (PP:1.00) and maximum likelihood (ML) (BS ≥ 97%). Therefore, based on statistical multivariate and phylogenetic analysis, the results showed a significant correlation between volatile chemical classes and genetic characteristics of Aniba species.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA de Plantas , Lauraceae , Óleos Voláteis/análise , Brasil , Lauraceae/química , Lauraceae/classificação , Filogenia , Especificidade da Espécie
9.
Molecules ; 26(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925975

RESUMO

Multiple zigzag chains Zm,n of length n and width m constitute an important class of regular graphene flakes of rectangular shape. The physical and chemical properties of these basic pericondensed benzenoids can be related to their various topological invariants, conveniently encoded as the coefficients of a combinatorial polynomial, usually referred to as the ZZ polynomial of multiple zigzag chains Zm,n. The current study reports a novel method for determination of these ZZ polynomials based on a hypothesized extension to John-Sachs theorem, used previously to enumerate Kekulé structures of various benzenoid hydrocarbons. We show that the ZZ polynomial of the Zm,n multiple zigzag chain can be conveniently expressed as a determinant of a Toeplitz (or almost Toeplitz) matrix of size m2×m2 consisting of simple hypergeometric polynomials. The presented analysis can be extended to generalized multiple zigzag chains Zkm,n, i.e., derivatives of Zm,n with a single attached polyacene chain of length k. All presented formulas are accompanied by formal proofs. The developed theoretical machinery is applied for predicting aromaticity distribution patterns in large and infinite multiple zigzag chains Zm,n and for computing the distribution of spin densities in biradical states of finite multiple zigzag chains Zm,n.

10.
Proc Biol Sci ; 287(1934): 20201429, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32873199

RESUMO

The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route-the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic compounds in defence secretions of the oribatid mite Archegozetes longisetosus. Exposing the mites to a diet containing high concentrations of antibiotics removed potential microbial partners but did not affect the production of defensive benzenoids. To gain insights into benzenoid biosynthesis, we fed mites with stable-isotope labelled precursors and monitored incorporation with mass spectrometry. Glucose, malonic acid and acetate, but not phenylalanine, were incorporated into the benzenoids, further evidencing autogenous biosynthesis. Whole-transcriptome sequencing with hidden Markov model profile search of protein domain families and subsequent phylogenetic analysis revealed a putative PKS domain similar to an actinobacterial PKS, possibly indicating a horizontal gene transfer.


Assuntos
Ácaros/fisiologia , Animais , Artrópodes/enzimologia , Artrópodes/metabolismo , Fungos , Compostos Orgânicos , Policetídeo Sintases/metabolismo , Simbiose
11.
Molecules ; 25(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905838

RESUMO

Prunus mume is the only fragrant flowering species of Prunus. According to the previous studies, benzyl acetate and eugenol dominate its floral scent. However, the diversity of its floral scents remains to be elucidated. In this work, the floral volatiles emitted from eight intraspecific cultivars of P. mume with white, pink and red flowers, were collected and analyzed using headspace solid-phase microextraction combined with gas chromatograms-mass spectrometry (HS-SPME-GC-MS). In total, 31 volatile compounds were identified, in which phenylpropanoids/benzenoids accounted for over 95% of the total emission amounts. Surprisingly, except for benzyl acetate and eugenol, several novel components, such as benzyl alcohol, cinnamyl acohol, cinnamy acetate, and benzyl benzoate were found in some cultivars. The composition of floral volatiles in cultivars with white flowers was similar, in which benzyl acetate was dominant, while within pink flowers, there were differences of floral volatile compositions. Principal component analysis (PCA) showed that the emissions of benzyl alcohol, cinnamyl alcohol, benzyl acetate, eugenol, cinnamyl acetate, and benzyl benzoate could make these intraspecific cultivars distinguishable from each other. Further, hierarchical cluster analysis indicated that cultivars with similar a category and amount of floral compounds were grouped together. Our findings lay a theoretical basis for fragrant plant breeding in P. mume.


Assuntos
Odorantes/análise , Prunus/química , Compostos Orgânicos Voláteis/análise , Derivados de Benzeno/isolamento & purificação , Flores/química , Cromatografia Gasosa-Espectrometria de Massas , Fenilpropionatos/isolamento & purificação , Melhoramento Vegetal , Extratos Vegetais/análise , Análise de Componente Principal , Microextração em Fase Sólida
12.
J Proteome Res ; 17(1): 189-202, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29043820

RESUMO

Anoxygenic phototrophic bacteria are metabolically versatile and survive under different growth modes using diverse organic compounds, yet their metabolic diversity is largely unexplored. In the present study, we employed stable-isotope-assisted metabolic profiling to unravel the l-phenylalanine catabolism in Rubrivivax benzoatilyticus JA2 under varying growth modes. Strain JA2 grows under anaerobic and aerobic conditions by utilizing l-phenylalanine as a nitrogen source. Furthermore, ring-labeled 13C6-phenylalanine feeding followed by liquid chromatography-mass spectrometry exometabolite profiling revealed 60 labeled metabolic features (M + 6, M + 12, and M + 18) derived solely from l-phenylalanine, of which 11 were identified, 7 putatively identified, and 42 unidentified under anaerobic and aerobic conditions. However, labeled metabolites were significantly higher in aerobic compared to anaerobic conditions. Furthermore, detected metabolites and enzyme activities indicated multiple l-phenylalanine catabolic routes mainly Ehrlich, homogentisate-dependent melanin, benzenoid, and unidentified pathways operating under anaerobic and aerobic conditions in strain JA2. Interestingly, the study indicated l-phenylalanine-dependent and independent benzenoid biosynthesis in strain JA2 and a differential flux of l-phenylalanine to Ehrlich and benzenoid pathways under anaerobic and aerobic conditions. Additionally, unidentified labeled metabolites strongly suggest the presence of unknown phenylalanine catabolic routes in strain JA2. Overall, the study uncovered the l-phenylalanine catabolic diversity in strain JA2 and demonstrated the potential of stable isotope-assisted metabolomics in unraveling the hidden metabolic repertoire.


Assuntos
Betaproteobacteria/metabolismo , Metabolômica/métodos , Fenilalanina/metabolismo , Aerobiose , Anaerobiose , Isótopos , Redes e Vias Metabólicas
13.
Mar Drugs ; 16(4)2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29642369

RESUMO

A previously unreported bis-indolyl benzenoid, candidusin D (2e) and a new hydroxypyrrolidine alkaloid, preussin C (5b) were isolated together with fourteen previously described compounds: palmitic acid, clionasterol, ergosterol 5,8-endoperoxides, chrysophanic acid (1a), emodin (1b), six bis-indolyl benzenoids including asterriquinol D dimethyl ether (2a), petromurin C (2b), kumbicin B (2c), kumbicin A (2d), 2″-oxoasterriquinol D methyl ether (3), kumbicin D (4), the hydroxypyrrolidine alkaloid preussin (5a), (3S, 6S)-3,6-dibenzylpiperazine-2,5-dione (6) and 4-(acetylamino) benzoic acid (7), from the cultures of the marine sponge-associated fungus Aspergillus candidus KUFA 0062. Compounds 1a, 2a-e, 3, 4, 5a-b, and 6 were tested for their antibacterial activity against Gram-positive and Gram-negative reference and multidrug-resistant strains isolated from the environment. Only 5a exhibited an inhibitory effect against S. aureus ATCC 29213 and E. faecalis ATCC29212 as well as both methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains. Both 1a and 5a also reduced significant biofilm formation in E. coli ATCC 25922. Moreover, 2b and 5a revealed a synergistic effect with oxacillin against MRSA S. aureus 66/1 while 5a exhibited a strong synergistic effect with the antibiotic colistin against E. coli 1410/1. Compound 1a, 2a-e, 3, 4, 5a-b, and 6 were also tested, together with the crude extract, for cytotoxic effect against eight cancer cell lines: HepG2, HT29, HCT116, A549, A 375, MCF-7, U-251, and T98G. Except for 1a, 2a, 2d, 4, and 6, all the compounds showed cytotoxicity against all the cancer cell lines tested.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Aspergillus/química , Bactérias/efeitos dos fármacos , Poríferos/microbiologia , Animais , Anisomicina/análogos & derivados , Anisomicina/química , Anisomicina/isolamento & purificação , Anisomicina/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Pirrolidinas/química , Pirrolidinas/isolamento & purificação , Pirrolidinas/farmacologia , Compostos de Terfenil/química , Compostos de Terfenil/isolamento & purificação
14.
Proc Natl Acad Sci U S A ; 112(31): 9775-80, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26124104

RESUMO

Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia.


Assuntos
Relógios Circadianos/genética , Flores/fisiologia , Genes de Plantas , Odorantes , Petunia/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Escuridão , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Propanóis/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Compostos Orgânicos Voláteis/metabolismo
15.
New Phytol ; 215(4): 1490-1502, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28675474

RESUMO

In petunia, the production of volatile benzenoids/phenylpropanoids determines floral aroma, highly regulated by development, rhythm and ethylene. Previous studies identified several R2R3-type MYB trans-factors as positive regulators of scent biosynthesis in petunia flowers. Ethylene response factors (ERFs) have been shown to take part in the signal transduction of hormones, and regulation of metabolism and development processes in various plant species. Using virus-induced gene silencing technology, a negative regulator of volatile benzenoid biosynthesis, PhERF6, was identified by a screen for regulators of the expression of genes related to scent production. PhERF6 expression was temporally and spatially connected with scent production and was upregulated by exogenous ethylene. Up-/downregulation of the mRNA level of PhERF6 affected the expression of ODO1 and several floral scent-related genes. PhERF6 silencing led to a significant increase in the concentrations of volatiles emitted by flowers. Yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays indicated that PhERF6 interacted with the N-terminus of EOBI, which includes two DNA binding domains. Our results show that PhERF6 negatively regulates volatile production in petunia flowers by competing for the binding of the c-myb domains of the EOBI protein with the promoters of genes related to floral scent.


Assuntos
Flores/metabolismo , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Núcleo Celular/metabolismo , Regulação para Baixo/genética , Ensaio de Desvio de Mobilidade Eletroforética , Etilenos/metabolismo , Flores/genética , Fluorescência , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Odorantes , Petunia/genética , Proteínas de Plantas/química , Regiões Promotoras Genéticas , Propanóis/metabolismo , Ligação Proteica , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/genética , Volatilização
16.
Planta ; 244(3): 725-36, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27146420

RESUMO

MAIN CONCLUSION: p -Methoxybenzoic acid carboxyl methyltransferase (MBMT) was isolated from loquat flowers. MBMT displayed high similarity to jasmonic acid carboxyl methyltransferases, but exhibited high catalytic activity to form methyl p -methoxybenzoate from p -methoxybenzoic acid. Volatile benzenoids impart the characteristic fragrance of loquat (Eriobotrya japonica) flowers. Here, we report that loquat produces methyl p-methoxybenzoate, along with other benzenoids, as the flowers bloom. Although the adaxial side of flower petals is covered with hairy trichomes, the trichomes are not the site of volatile benzenoid formation. Here we identified four carboxyl methyltransferase (EjMT1 to EjMT4) genes from loquat and functionally characterized EjMT1 which we found to encode a p-methoxybenzoic acid carboxyl methyltransferase (MBMT); an enzyme capable of converting p-methoxybenzoic acid to methyl p-methoxybenzoate via methylation of the carboxyl group. We found that transcript levels of MBMT continually increased throughout the flower development with peak expression occurring in fully opened flowers. Recombinant MBMT protein expressed in Escherichia coli showed the highest substrate preference toward p-methoxybenzoic acid with an apparent K m value of 137.3 µM. In contrast to benzoic acid carboxyl methyltransferase (BAMT) and benzoic acid/salicylic acid carboxyl methyltransferase, MBMT also displayed activity towards both benzoic acid and jasmonic acid. Phylogenetic analysis revealed that loquat MBMT forms a monophyletic group with jasmonic acid carboxyl methyltransferases (JMTs) from other plant species. Our results suggest that plant enzymes with same BAMT activity have evolved independently.


Assuntos
Eriobotrya/enzimologia , Éteres de Hidroxibenzoatos/metabolismo , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Eriobotrya/genética , Flores/enzimologia , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Folhas de Planta/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Análise de Sequência de DNA
17.
Plant Cell Environ ; 37(8): 1936-49, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24588567

RESUMO

Floral volatiles have attracted humans' attention since antiquity and have since then permeated many aspects of our lives. Indeed, they are heavily used in perfumes, cosmetics, flavourings and medicinal applications. However, their primary function is to mediate ecological interactions between flowers and a diverse array of visitors, including pollinators, florivores and pathogens. As such, they ultimately ensure the plants' reproductive and evolutionary success. To date, over 1700 floral volatile organic compounds (VOCs) have been identified. Interestingly, they are derived from only a few biochemical networks, which include the terpenoid, phenylpropanoid/benzenoid and fatty acid biosynthetic pathways. These pathways are intricately regulated by endogenous and external factors to enable spatially and temporally controlled emission of floral volatiles, thereby fine-tuning the ecological interactions facilitated by floral volatiles. In this review, we will focus on describing the biosynthetic pathways leading to floral VOCs, the regulation of floral volatile emission, as well as biological functions of emitted volatiles.


Assuntos
Flores/química , Odorantes , Compostos Orgânicos Voláteis/química , Animais , Ácidos Graxos/química , Flores/fisiologia , Redes e Vias Metabólicas , Plantas/química , Polinização , Terpenos/química
18.
Angew Chem Int Ed Engl ; 53(50): 13902-6, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25296854

RESUMO

The cyanosporasides A-F are a collection of monochlorinated benzenoid derivatives isolated from the marine actinomycetes Salinispora and Streptomyces sp. All derivatives feature one of two types of cyanocyclopenta[a]indene frameworks, which are regioisomeric in the position of a single chlorine atom. It is proposed that these chloro-substituted benzenoids are formed biosynthetically through the cycloaromatization of a bicyclic nine-membered enediyne precursor. Herein, we report the synthesis of such a bicyclic precursor, its spontaneous transannulation into a p-benzyne, and its differential 1,4 hydrochlorination reactivity under either organochlorine or chloride-salt conditions. Our bioinspired approach culminated in the first regiodivergent total synthesis of the aglycons A/F and B/C, as well as cyanosporasides D and E. In addition, empirical insights into the site selectivity of a natural-like p-benzyne, calculated to be a ground-state triplet diradical, to hydrogen, chlorine, and chloride sources are revealed.


Assuntos
Derivados de Benzeno/química , Biomimética , Cloro/química
19.
Int J Food Microbiol ; 415: 110631, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38402671

RESUMO

Hanseniaspora vineae exhibits extraordinary positive oenological characteristics contributing to the aroma and texture of wines, especially by its ability to produce great concentrations of benzenoid and phenylpropanoid compounds compared with conventional Saccharomyces yeasts. Consequently, in practice, sequential inoculation of H. vineae and Saccharomyces cerevisiae allows to improve the aromatic quality of wines. In this work, we evaluated the impact on wine aroma produced by increasing the concentration of phenylalanine, the main amino acid precursor of phenylpropanoids and benzenoids. Fermentations were carried out using a Chardonnay grape juice containing 150 mg N/L yeast assimilable nitrogen. Fermentations were performed adding 60 mg/L of phenylalanine without any supplementary addition to the juice. Musts were inoculated sequentially using three different H. vineae strains isolated from Uruguayan vineyards and, after 96 h, S. cerevisiae was inoculated to complete the process. At the end of the fermentation, wine aromas were analysed by both gas chromatography-mass spectrometry and sensory evaluation through a panel of experts. Aromas derived from aromatic amino acids were differentially produced depending on the treatments. Sensory analysis revealed more floral character and greater aromatic complexity when compared with control fermentations without phenylalanine added. Moreover, fermentations performed in synthetic must with pure H. vineae revealed that even tyrosine can be used in absence of phenylalanine, and phenylalanine is not used by this yeast for the synthesis of tyrosine derivatives.


Assuntos
Hanseniaspora , Vinho , Vinho/análise , Fermentação , Saccharomyces cerevisiae/metabolismo , Odorantes/análise , Fenilalanina/análise , Fenilalanina/metabolismo , Hanseniaspora/metabolismo , Tirosina/análise , Tirosina/metabolismo
20.
Metabolites ; 13(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37512575

RESUMO

Formed by L-phenylalanine (L-phe) ammonia under the action of aromatic amino acid aminotransferases (AAATs), volatile benzenoids (VBs) and volatile phenylpropanoids (VPs) are essential aromatic components in oolong tea (Camellia sinensis). However, the key VB/VP components responsible for the aromatic quality of oolong tea need to be revealed, and the formation mechanism of VBs/VPs based on AAAT branches during the post-harvest process of oolong tea remains unclear. Therefore, in this study, raw oolong tea and manufacturing samples were used as the test materials, and targeted metabolomics combined with transcriptome analysis was also conducted. The results showed that thirteen types of VBs/VPs were identified, including nine types of VPs and four types of VBs. Based on the OAV calculation, in raw oolong tea, 2-hydroxy benzoic acid methyl ester and phenylethyl alcohol were identified as key components of the aromatic quality of oolong tea. As for the results from the selection of related genes, firstly, a total of sixteen candidate CsAAAT genes were selected and divided into two sub-families (CsAAAT1 and CsAAAT2); then, six key CsAAAT genes closely related to VB/VP formation were screened. The upregulation of the expression level of CsAAAT2-type genes may respond to light stress during solar-withering as well as the mechanical force of turnover. This study can help to understand the formation mechanism of aromatic compounds during oolong tea processing and provide a theoretical reference for future research on the formation of naturally floral and fruity aromas in oolong tea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA