Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(42): e2307981120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812727

RESUMO

Benzoxazinoids (BXDs) form a class of indole-derived specialized plant metabolites with broad antimicrobial and antifeedant properties. Unlike most specialized metabolites, which are typically lineage-specific, BXDs occur sporadically in a number of distantly related plant orders. This observation suggests that BXD biosynthesis arose independently numerous times in the plant kingdom. However, although decades of research in the grasses have led to the elucidation of the BXD pathway in the monocots, the biosynthesis of BXDs in eudicots is unknown. Here, we used a metabolomic and transcriptomic-guided approach, in combination with pathway reconstitution in Nicotiana benthamiana, to identify and characterize the BXD biosynthetic pathways from both Aphelandra squarrosa and Lamium galeobdolon, two phylogenetically distant eudicot species. We show that BXD biosynthesis in A. squarrosa and L. galeobdolon utilize a dual-function flavin-containing monooxygenase in place of two distinct cytochrome P450s, as is the case in the grasses. In addition, we identified evolutionarily unrelated cytochrome P450s, a 2-oxoglutarate-dependent dioxygenase, a UDP-glucosyltransferase, and a methyltransferase that were also recruited into these BXD biosynthetic pathways. Our findings constitute the discovery of BXD pathways in eudicots. Moreover, the biosynthetic enzymes of these pathways clearly demonstrate that BXDs independently arose in the plant kingdom at least three times. The heterogeneous pool of identified BXD enzymes represents a remarkable example of metabolic plasticity, in which BXDs are synthesized according to a similar chemical logic, but with an entirely different set of metabolic enzymes.


Assuntos
Magnoliopsida , Magnoliopsida/metabolismo , Benzoxazinas/metabolismo , Poaceae/metabolismo , Redes e Vias Metabólicas/genética , Plantas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(44): e2310134120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878725

RESUMO

Plants exude specialized metabolites from their roots, and these compounds are known to structure the root microbiome. However, the underlying mechanisms are poorly understood. We established a representative collection of maize root bacteria and tested their tolerance against benzoxazinoids (BXs), the dominant specialized and bioactive metabolites in the root exudates of maize plants. In vitro experiments revealed that BXs inhibited bacterial growth in a strain- and compound-dependent manner. Tolerance against these selective antimicrobial compounds depended on bacterial cell wall structure. Further, we found that native root bacteria isolated from maize tolerated the BXs better compared to nonhost Arabidopsis bacteria. This finding suggests the adaptation of the root bacteria to the specialized metabolites of their host plant. Bacterial tolerance to 6-methoxy-benzoxazolin-2-one (MBOA), the most abundant and selective antimicrobial metabolite in the maize rhizosphere, correlated significantly with the abundance of these bacteria on BX-exuding maize roots. Thus, strain-dependent tolerance to BXs largely explained the abundance pattern of bacteria on maize roots. Abundant bacteria generally tolerated MBOA, while low abundant root microbiome members were sensitive to this compound. Our findings reveal that tolerance to plant specialized metabolites is an important competence determinant for root colonization. We propose that bacterial tolerance to root-derived antimicrobial compounds is an underlying mechanism determining the structure of host-specific microbial communities.


Assuntos
Anti-Infecciosos , Arabidopsis , Microbiota , Zea mays/metabolismo , Raízes de Plantas/metabolismo , Bactérias/metabolismo , Plantas/metabolismo , Rizosfera , Benzoxazinas/farmacologia , Benzoxazinas/metabolismo , Arabidopsis/metabolismo , Anti-Infecciosos/metabolismo , Microbiologia do Solo
3.
Plant Mol Biol ; 114(3): 42, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630198

RESUMO

Continuous cropping of faba bean (Vicia faba L.) has led to a high incidence of wilt disease. The implementation of an intercropping system involving wheat and faba bean can effectively control the propagation of faba bean wilt disease. To investigate the mechanisms of wheat in mitigating faba bean wilt disease in a wheat-faba bean intercropping system. A comprehensive investigation was conducted to assess the temporal variations in Fusarium oxysporum f. sp. fabae (FOF) on the chemotaxis of benzoxazinoids (BXs) and wheat root through indoor culture tests. The effects of BXs on FOF mycelial growth, spore germination, spore production, and electrical conductivity were examined. The influence of BXs on the ultrastructure of FOF was investigated through transmission electron microscopy. Eukaryotic mRNA sequencing was utilized to analyze the differentially expressed genes in FOF upon treatment with BXs. FOF exhibited a significant positive chemotactic effect on BXs in wheat roots and root secretions. BXs possessed the potential to exert significant allelopathic effects on the mycelial growth, spore germination, and sporulation of FOF. In addition, BXs demonstrated a remarkable ability to disrupt the structural integrity and stability of the membrane and cell wall of the FOF mycelia. BXs possessed the capability of posing threats to the integrity and stability of the cell membrane and cell wall. This ultimately resulted in physiological dysfunction, effectively inhibiting the regular growth and developmental processes of the FOF.


Assuntos
Benzoxazinas , Fusarium , Vicia faba , Parede Celular , Triticum , Crescimento e Desenvolvimento
4.
New Phytol ; 243(6): 2093-2101, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39049575

RESUMO

Diverse networks of specialized metabolites promote plant fitness by mediating beneficial and antagonistic environmental interactions. In maize (Zea mays), constitutive and dynamically formed cocktails of terpenoids, benzoxazinoids, oxylipins, and phenylpropanoids contribute to plant defense and ecological adaptation. Recent research has highlighted the multifunctional nature of many specialized metabolites, serving not only as elaborate chemical defenses that safeguard against biotic and abiotic stress but also as regulators in adaptive developmental processes and microbiome interactions. Great strides have also been made in identifying the modular pathway networks that drive maize chemical diversity. Translating this knowledge into strategies for enhancing stress resilience traits has the potential to address climate-driven yield losses in one of the world's major food, feed, and bioenergy crops.


Assuntos
Adaptação Fisiológica , Zea mays , Zea mays/microbiologia , Zea mays/imunologia , Zea mays/fisiologia , Imunidade Vegetal , Meio Ambiente , Estresse Fisiológico
5.
J Chem Ecol ; 50(5-6): 299-318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38305931

RESUMO

Intercropping is drawing increasing attention as a strategy to increase crop yields and manage pest pressure, however the mechanisms of associational resistance in diversified cropping systems remain controversial. We conducted a controlled experiment to assess the impact of co-planting with silverleaf Desmodium (Desmodium uncinatum) on maize secondary metabolism and resistance to herbivory by the spotted stemborer (Chilo partellus). Maize plants were grown either in the same pot with a Desmodium plant or adjacent to it in a separate pot. Our findings indicate that co-planting with Desmodium influences maize secondary metabolism and herbivore resistance through both above and below-ground mechanisms. Maize growing in the same pot with a Desmodium neighbor was less attractive for oviposition by spotted stemborer adults. However, maize exposed only to above-ground Desmodium cues generally showed increased susceptibility to spotted stemborer herbivory (through both increased oviposition and larval consumption). VOC emissions and tissue secondary metabolite titers were also altered in maize plants exposed to Desmodium cues, with stronger effects being observed when maize and Desmodium shared the same pot. Specifically, benzoxazinoids were strongly suppressed in maize roots by direct contact with a Desmodium neighbor while headspace emissions of short-chain aldehydes and alkylbenzenes were increased. These results imply that direct root contact or soil-borne cues play an important role in mediating associational effects on plant resistance in this system.


Assuntos
Herbivoria , Oviposição , Zea mays , Zea mays/metabolismo , Zea mays/fisiologia , Animais , Oviposição/efeitos dos fármacos , Metabolismo Secundário , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Benzoxazinas/metabolismo , Benzoxazinas/farmacologia , Larva/fisiologia , Larva/crescimento & desenvolvimento , Fabaceae/metabolismo , Fabaceae/fisiologia , Feminino , Raízes de Plantas/metabolismo , Mariposas/fisiologia , Mariposas/crescimento & desenvolvimento
6.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34675080

RESUMO

Plant secondary (or specialized) metabolites mediate important interactions in both the rhizosphere and the phyllosphere. If and how such compartmentalized functions interact to determine plant-environment interactions is not well understood. Here, we investigated how the dual role of maize benzoxazinoids as leaf defenses and root siderophores shapes the interaction between maize and a major global insect pest, the fall armyworm. We find that benzoxazinoids suppress fall armyworm growth when plants are grown in soils with very low available iron but enhance growth in soils with higher available iron. Manipulation experiments confirm that benzoxazinoids suppress herbivore growth under iron-deficient conditions and in the presence of chelated iron but enhance herbivore growth in the presence of free iron in the growth medium. This reversal of the protective effect of benzoxazinoids is not associated with major changes in plant primary metabolism. Plant defense activation is modulated by the interplay between soil iron and benzoxazinoids but does not explain fall armyworm performance. Instead, increased iron supply to the fall armyworm by benzoxazinoids in the presence of free iron enhances larval performance. This work identifies soil chemistry as a decisive factor for the impact of plant secondary metabolites on herbivore growth. It also demonstrates how the multifunctionality of plant secondary metabolites drives interactions between abiotic and biotic factors, with potential consequences for plant resistance in variable environments.


Assuntos
Benzoxazinas/metabolismo , Herbivoria , Solo/química , Spodoptera/crescimento & desenvolvimento , Zea mays/metabolismo , Animais , Ecossistema , Homeostase , Ferro/metabolismo , Larva/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Zea mays/parasitologia
7.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000567

RESUMO

Benzoxazinoids (BXs) are unique bioactive metabolites with protective and allelopathic properties in maize in response to diverse stresses. The production of BXs involves the fine regulations of BXs biosynthetic gene cluster (BGC). However, little is known about whether and how the expression pattern of BGC members is impacted by biotic and abiotic stresses. Here, maize BGC was systemically investigated and 26 BGC gene members were identified on seven chromosomes, for which Bin 4.00-4.01/4.03-4.04/7.02 were the most enriched regions. All BX proteins were clearly divided into three classes and seven subclasses, and ten conserved motifs were further identified among these proteins. These proteins were localized in the subcellular compartments of chloroplast, endoplasmic reticulum, or cytoplasmic, where their catalytic activities were specifically executed. Three independent RNA-sequencing (RNA-Seq) analyses revealed that the expression profiles of the majority of BGC gene members were distinctly affected by multiple treatments, including light spectral quality, low-temperature, 24-epibrassinolide induction, and Asian corn borer infestation. Thirteen differentially expressed genes (DEGs) with high and specific expression levels were commonly detected among three RNA-Seq, as core conserved BGC members for regulating BXs biosynthesis under multiple abiotic/biotic stimulates. Moreover, the quantitative real-time PCR (qRT-PCR) verified that six core conserved genes in BGC were significantly differentially expressed in leaves of seedlings upon four treatments, which caused significant increases in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) content under darkness and wound treatments, whereas a clear decrease in DIMBOA content was observed under low-temperature treatment. In conclusion, the changes in BX metabolites in maize were regulated by BGC gene members in multiple stress presences. Therefore, the identification of key genes associated with BX accumulation under biotic/abiotic stresses will provide valuable gene resources for breeding maize varieties with enhanced capability to adapt to environmental stresses.


Assuntos
Benzoxazinas , Regulação da Expressão Gênica de Plantas , Família Multigênica , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/metabolismo , Benzoxazinas/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Filogenia
8.
Plant Cell Environ ; 46(10): 3072-3089, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36207806

RESUMO

Insect herbivory challenges plant survival, and coordination of the interactions between growth, herbivore resistance/tolerance is a key problem faced by plants. Based on field experiments into resistance to the Asian corn borer (ACB, Ostrinia furnacalis), we selected 10 inbred maize lines, of which five were resistant and five were susceptible to ACB. We conducted ACB larval bioassays, analysed defensive chemicals, phytohormones, and relative gene expression using RNA-seq and qPCR as well as agronomic traits, and found resistant lines had weaker inducibility, but were more resistant after ACB attack than susceptible lines. Resistance was related to high levels of major benzoxazinoids, but was not related to induced levels of JA or JA-Ile. Following combination analyses of transcriptome, metabolome and larval performance data, we discovered three benzoxazinoids biosynthesis-related transcription factors, NAC60, WRKY1 and WRKY46. Protoplast transformation analysis suggested that these may regulate maize defence-growth trade-offs by increasing levels of benzoxazinoids, JA and SA but decreasing IAA. Moreover, the resistance/tolerance-growth trade-offs were not observed in the 10 lines, and genotype-specific metabolic and genetic features probably eliminated the trade-offs. This study highlights the possibility of breeding maize varieties simultaneously with improved defences and higher yield under complex field conditions.


Assuntos
Mariposas , Zea mays , Animais , Zea mays/genética , Zea mays/metabolismo , Benzoxazinas/metabolismo , Mariposas/fisiologia , Larva , Genótipo , Herbivoria
9.
J Exp Bot ; 73(16): 5358-5360, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36095661

RESUMO

This article comments on: Batyrshina ZS, Shavit R, Yaakov B, Bocobza S, Tzin V. 2022. The transcription factor gene TaMYB31 regulates the benzoxazinoid biosynthetic pathway in wheat. Journal of Experimental Botany73, 5634-5649. Benzoxazinoids (BXDs) are abundant indole-derived specialized metabolites in several monocot crop species, such as wheat, maize, and rye. They function in plant immunity against herbivorous arthropods and fungal pathogens, but also as iron chelators, in metal tolerance, and as allelochemicals. Although BXD biosynthetic pathways have been studied extensively and are well described, information about the transcriptional regulation of BXD biosynthesis is scarce. In the current issue of JXB, Batyrshina et al. (2022) identified the transcription factor gene TaMYB31 in the tetraploid wheat Triticum turgidum and verified its function as a component of BXD metabolism in the hexaploid wheat Triticum aestivum, where it regulates constitutive and stress-inducible BXD biosynthesis.


Assuntos
Benzoxazinas , Triticum , Benzoxazinas/metabolismo , Regulação da Expressão Gênica de Plantas , Tetraploidia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/fisiologia
10.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362321

RESUMO

Overexpression of melanin contributes to darkening of plant and fruit tissues and skin hyperpigmentation, leading to melasma or age spots. Although melanin biosynthesis is complex and involves several steps, a single enzyme known as tyrosinase is key to regulating this process. The melanogenesis pathway is initiated by oxidation of the starting material l-tyrosine (or l-DOPA) to dopaquinone by tyrosinase; the resulting quinone then serves as a substrate for subsequent steps that eventually lead to production of melanin. Medicinal plants are considered a good source of tyrosinase inhibitors. This study investigated the tyrosinase inhibitory activity of A. mollis leaf extracts and their phytochemicals. Significant activity was verified in the ethanol extract -EEt (IC50 = 1.21 µg/mL). Additionally, a kinetic study showed that this tyrosinase inhibition occurs by DIBOA (2,4-dihydroxy-1,4-benzoxazin-3-one) and verbascoside contribution through a non-competitive reaction mechanism. A synergistic effect on tyrosinase inhibition was observed in the binary combination of the compounds. In conclusion, both EEt and a mixture of two of its phytochemicals can be effective tyrosinase inhibitors and can be used as a bleaching agent for cosmetic formulations in the future.


Assuntos
Acanthaceae , Monofenol Mono-Oxigenase , Monofenol Mono-Oxigenase/metabolismo , Melaninas/metabolismo , Extratos Vegetais/farmacologia , Compostos Fitoquímicos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
11.
Chimia (Aarau) ; 76(11): 928-938, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069788

RESUMO

Benzoxazinoids are specialized metabolites that modulate plant physiology and plant interactions with their environment. In this review, we synthesize their multiple functions and ecological relevance. We first provide an overview of benzoxazinoid biosynthesis and highlight known regulatory elements involved in modulating their production. We then outline the role of benzoxazinoids in plant nutrition, vegetative and reproductive growth, and defense. We further summarize benzoxazinoid response to environmental factors such as temperature, drought, CO2, light, or nutrient levels and emphasize their potential role in tolerating abiotic stresses. Finally, we argue that benzoxazinoids act as a strong selective force on different trophic levels by shaping the plant interactions with microbes, insect herbivores, and competitor plants. Understanding the pivotal role of benzoxazinoids in plant biology is crucial to apprehend their impact on (agro)ecosystem functioning and diversity.

12.
Mol Plant Microbe Interact ; 34(5): 524-537, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33166203

RESUMO

The interactions of crops with root-colonizing endophytic microorganisms are highly relevant to agriculture, because endophytes can modify plant resistance to pests and increase crop yields. We investigated the interactions between the host plant Zea mays and the endophytic fungus Trichoderma virens at 5 days postinoculation grown in a hydroponic system. Wild-type T. virens and two knockout mutants, with deletion of the genes tv2og1 or vir4 involved in specialized metabolism, were analyzed. Root colonization by the fungal mutants was lower than that by the wild type. All fungal genotypes suppressed root biomass. Metabolic fingerprinting of roots, mycelia, and fungal culture supernatants was performed using ultrahigh performance liquid chromatography coupled to diode array detection and quadrupole time-of-flight tandem mass spectrometry. The metabolic composition of T. virens-colonized roots differed profoundly from that of noncolonized roots, with the effects depending on the fungal genotype. In particular, the concentrations of several metabolites derived from the shikimate pathway, including an amino acid and several flavonoids, were modulated. The expression levels of some genes coding for enzymes involved in these pathways were affected if roots were colonized by the ∆vir4 genotype of T. virens. Furthermore, mycelia and fungal culture supernatants of the different T. virens genotypes showed distinct metabolomes. Our study highlights the fact that colonization by endophytic T. virens leads to far-reaching metabolic changes, partly related to two fungal genes. Both metabolites produced by the fungus and plant metabolites modulated by the interaction probably contribute to these metabolic patterns. The metabolic changes in plant tissues may be interlinked with systemic endophyte effects often observed in later plant developmental stages.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Hypocrea , Trichoderma , Endófitos , Raízes de Plantas , Zea mays
13.
New Phytol ; 231(3): 957-962, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33826755

RESUMO

Plants are systemically relevant to our planet not only by constituting a major part of its biomass, but also because they produce a vast diversity of bioactive phytochemicals. These compounds often modulate interactions between plants and the environment, and can have substantial effects on plant consumers and their health. By taking a food web perspective, we highlight the role of bioactive phytochemicals in linking soils, plants, animals and humans and discuss their contributions to systems health. The analysis of connections among food web components revealed an underexplored potential of phytochemicals to optimize food web health and productivity.


Assuntos
Cadeia Alimentar , Compostos Fitoquímicos , Animais , Plantas
14.
New Phytol ; 229(3): 1715-1727, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33006149

RESUMO

Entomopathogenic fungi (EPF) can display a plant-associated lifestyle as endophytes. Seed application of EPF can affect insect herbivory above ground, but the mechanisms behind this are not documented. Here we applied three EPF isolates, Beauveria bassiana, Metarhizium brunneum and M. robertsii, as seed inoculation of wheat and bean, and evaluated the effects on population growth of aphids, Rhopalosiphum padi and Aphis fabae, respectively. In wheat and bean leaves, we quantified benzoxazinoids and flavonoids, respectively, in response to EPF inoculation and aphid infestation to elucidate the role of specific plant secondary metabolites (PSMs) in plant-fungus-herbivore interactions. Inoculations of wheat and bean with M. robertsii and B. bassiana reduced aphid populations compared with control treatments, whereas M. brunneum unexpectedly increased the populations of both aphids. Concentrations of the majority of PSMs were differentially altered in EPF-treated plants infested with aphids. Changes in aphid numbers were associated with PSMs regulation rather than EPF endophytic colonisation capacity. This study links the effects of EPF seed inoculations against aphids with unique PSM accumulation patterns in planta. The understanding of PSM regulation in tri-trophic interactions is important for the future development of EPF for pest management.


Assuntos
Afídeos , Beauveria , Animais , Metarhizium , Controle Biológico de Vetores , Sementes
15.
J Exp Bot ; 72(10): 3792-3805, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33647931

RESUMO

Biotic and abiotic cues can trigger priming in plants, which enables plants to respond to subsequent challenge with stronger and/or faster responses. It is well known that herbivory activates defense-related responses in systemic leaves. However, little is known about whether insect feeding activates priming in systemic leaves. To determine whether and how herbivory induces priming in maize systemic leaves, a combination of insect bioassays, phytohormone and defense metabolite quantification, and genetic and transcriptome analyses were performed. Actual and simulated Mythimna separata herbivory in maize local leaves primed the systemic leaves for enhanced accumulation of jasmonic acid and benzoxazinoids and increased resistance to M. separata. Activation of priming in maize systemic leaves depends on both the duration of simulated herbivory and perception of M. separata oral secretions in the local leaves, and genetic analysis indicated that jasmonic acid and benzoxazinoids mediate the primed defenses in systemic leaves. Consistently, in response to simulated herbivory, the primed systemic leaves exhibited a large number of genes that were uniquely regulated or showed further up- or down-regulation compared with the non-primed systemic leaves. This study provides new insight into the regulation and ecological function of priming in maize.


Assuntos
Herbivoria , Mariposas , Animais , Ciclopentanos , Oxilipinas , Reguladores de Crescimento de Plantas , Folhas de Planta , Zea mays/genética
16.
J Exp Bot ; 72(1): 57-69, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-32995888

RESUMO

One of the major questions in contemporary plant science involves determining the functional mechanisms that plants use to shape their microbiome. Plants produce a plethora of chemically diverse secondary metabolites, many of which exert bioactive effects on microorganisms. Several recent publications have unequivocally shown that plant secondary metabolites affect microbiome composition and function. These studies have pinpointed that the microbiome can be influenced by a diverse set of molecules, including: coumarins, glucosinolates, benzoxazinoids, camalexin, and triterpenes. In this review, we summarize the role of secondary metabolites in shaping the plant microbiome, highlighting recent literature. A body of knowledge is now emerging that links specific plant metabolites with distinct microbial responses, mediated via defined biochemical mechanisms. There is significant potential to boost agricultural sustainability via the targeted enhancement of beneficial microbial traits, and here we argue that the newly discovered links between root chemistry and microbiome composition could provide a new set of tools for rationally manipulating the plant microbiome.


Assuntos
Microbiota , Rizosfera , Raízes de Plantas , Plantas
17.
Metabolomics ; 17(2): 18, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33502591

RESUMO

INTRODUCTION: Wheat (Triticum aestivum) it is one of the most important staple food crops worldwide and represents an important resource for human nutrition. Besides starch, proteins and micronutrients wheat grains accumulate a highly diverse set of phytochemicals. OBJECTIVES: This work aimed at the development and validation of an analytical workflow for comprehensive profiling of semi-polar phytochemicals in whole wheat grains. METHOD: Reversed-phase ultra-high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC/ESI-QTOFMS) was used as analytical platform. For annotation of metabolites accurate mass collision-induced dissociation mass spectra were acquired and interpreted in conjunction with literature data, database queries and analyses of reference compounds. RESULTS: Based on reversed-phase UHPLC/ESI-QTOFMS an analytical workflow for comprehensive profiling of semi-polar phytochemicals in whole wheat grains was developed. For method development the extraction procedure and the chromatographic separation were optimized. Using whole grains of eight wheat cultivars a total of 248 metabolites were annotated and characterized by chromatographic and tandem mass spectral data. Annotated metabolites comprise hydroquinones, hydroxycinnamic acid amides, flavonoids, benzoxazinoids, lignans and other phenolics as well as numerous primary metabolites such as nucleosides, amino acids and derivatives, organic acids, saccharides and B vitamin derivatives. For method validation, recovery rates and matrix effects were determined for ten exogenous model compounds. Repeatability and linearity were assessed for 39 representative endogenous metabolites. In addition, the accuracy of relative quantification was evaluated for six exogenous model compounds. CONCLUSIONS: In conjunction with non-targeted and targeted data analysis strategies the developed analytical workflow was successfully applied to discern differences in the profiles of semi-polar phytochemicals accumulating in whole grains of eight wheat cultivars.


Assuntos
Cromatografia Líquida/métodos , Metabolômica/métodos , Compostos Fitoquímicos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Triticum/química , Grãos Integrais/química , Aminoácidos/análise , Benzoxazinas/análise , Carboidratos/análise , Cromatografia de Fase Reversa/métodos , Ácidos Cumáricos/análise , Flavonoides/análise , Análise de Alimentos , Humanos , Hidroquinonas/análise , Lignanas/análise , Fenóis/análise , Vitaminas/análise
18.
Plant Dis ; 105(4): 752-757, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33048595

RESUMO

Corn yield reduction following a cereal rye cover crop has been attributed to, among other factors, allelochemicals released from decomposing cereal rye residue. The allelopathic effect of 6-methoxy-2-benzoxazolinone (MBOA) was evaluated on corn seedling growth, mycelial growth of seven pathogenic species of Pythium, and root rot of corn seedlings caused by Pythium spp. at 13, 16, and 22 to 23°C (room temperature) using a plate assay. Mycelial growth of all Pythium spp. tested was slower with MBOA at 0.25 mg/ml compared with MBOA at 0.125 and 0.0625 mg/ml and the check (4% V8 juice medium containing neomycin sulfate and chloramphenicol with 0.5% dimethyl sulfoxide). Therefore, no further tests were done with MBOA at 0.25 mg/ml. In general, MBOA reduced corn radicle length and did not cause root rot across all temperatures. However, greater root rot severity in corn was observed on corn seedlings grown in the presence of Pythium lutarium and P. oopapillum on media amended with MBOA compared with the check at all temperatures. Similarly, more root rot caused by P. torulosum and P. spinosum was observed when MBOA was present at 16°C compared with the check with no MBOA. These data suggest that corn seedling disease caused by Pythium spp. could be more severe when corn is planted following a cover crop of winter cereal rye due to the presence of allelochemicals that are released from the cover crop.


Assuntos
Pythium , Benzoxazóis/farmacologia , Plântula , Zea mays
19.
Phytochem Anal ; 32(3): 283-297, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32688439

RESUMO

INTRODUCTION: Benzoxazinoids (BXs) are plant phytochemicals that have both defensive properties in plants and therapeutic effects in humans. The presence of BXs has been largely studied in the Poaceae family (monocots). To study the presence or absence of BXs in dicotyledons and monocotyledons outside the Poaceae family, parts of 24 plant species at several growth stages were selected for analysis, some of which were already known to contain BXs. OBJECTIVES: To devise a stepwise mass spectrometry-based approach for confirming the presence of BXs in plant samples, and to use the method to explore the status of BXs in selected plant species. EXPERIMENTAL: Plant samples were extracted using accelerated solvent extraction and analysed using triple-quadrupole liquid chromatography-mass spectrometry. RESULTS: The use of different columns, double mass transitions, and ion ratios proved to be a robust tool for confirming the presence of BXs in different plant species. By this method, the presence of BXs was confirmed in three of the 24 species. Double-hexose forms of BXs, which have not been reported before in dicotyledons, were confirmed to be present in the dicotyledon plants Acanthus mollis and Lamium galeobdolon, and the presence of BXs in the seeds of Consolida orientalis is reported for the first time here. High concentrations of BXs were found in the aerial parts of Acanthus mollis and Lamium galeobdolon, at 20 and 32 µmol/g plant dry weight, respectively. CONCLUSIONS: The stepwise approach described in this work confirmed the presence of BXs in new samples.


Assuntos
Acanthaceae , Lamiaceae , Benzoxazinas , Espectrometria de Massas , Verduras
20.
BMC Plant Biol ; 20(1): 19, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931716

RESUMO

BACKGROUND: Young wheat plants are continuously exposed to herbivorous insect attack. To reduce insect damage and maintain their growth, plants evolved different defense mechanisms, including the biosynthesis of deterrent compounds named benzoxazinoids, and/or trichome formation that provides physical barriers. It is unclear whether both of these mechanisms are equally critical in providing an efficient defense for wheat seedlings against aphids-an economically costly pest in cereal production. RESULTS: In this study, we compared the transcriptome, metabolome, benzoxazinoids, and trichome density of three selected wheat genotypes, with a focus on differences related to defense mechanisms. We chose diverse wheat genotypes: two tetraploid wheat genotypes, domesticated durum 'Svevo' and wild emmer 'Zavitan,' and one hexaploid bread wheat, 'Chinese Spring.' The full transcriptomic analysis revealed a major difference between the three genotypes, while the clustering of significantly different genes suggested a higher similarity between the two domesticated wheats than between either and the wild wheat. A pathway enrichment analysis indicated that the genes associated with primary metabolism, as well as the pathways associated with defense such as phytohormones and specialized metabolites, were different between the three genotypes. Measurement of benzoxazinoid levels at the three time points (11, 15, and 18 days after germination) revealed high levels in the two domesticated genotypes, while in wild emmer wheat, they were below detection level. In contrast to the benzoxazinoid levels, the trichome density was dramatically higher in the wild emmer than in the domesticated wheat. Lastly, we tested the bird cherry-oat aphid's (Rhopalosiphum padi) performance and found that Chinese Spring is more resistant than the tetraploid genotypes. CONCLUSIONS: Our results show that benzoxazinoids play a more significant defensive role than trichomes. Differences between the abundance of defense mechanisms in the wild and domesticated plants were observed in which wild emmer possesses high physical defenses while the domesticated wheat genotypes have high chemical defenses. These findings provide new insights into the defense adaptations of wheat plants against aphids.


Assuntos
Afídeos/fisiologia , Benzoxazinas/metabolismo , Imunidade Vegetal/genética , Triticum/genética , Animais , Domesticação , Perfilação da Expressão Gênica , Genótipo , Herbivoria , Metabolômica , Imunidade Vegetal/fisiologia , Tricomas/anatomia & histologia , Triticum/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA