RESUMO
Two neutral copper(I) halide complexes ([Cu(BTU)2X], X = Cl, Br) were prepared by the reduction of the corresponding copper(II) halides (chloride or bromide) with a benzoylthiourea (BTU, N-(3,4-diheptyloxybenzoyl)-N'-(4-heptadecafluorooctylphenyl)thiourea) ligand in ethanol. The two copper(I) complexes show a very interesting combination of 2D supramolecular structures, liquid crystalline, emission, and 1D ionic conduction properties. Their chemical structure was ascribed based on ESI-MS, elemental analysis, IR, and NMR spectroscopies (1H and 13C), while the mesomorphic behavior was analyzed through a combination of differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and powder X-ray diffraction (XRD). These new copper(I) complexes have mesomorphic properties and exhibit a hexagonal columnar mesophase over a large temperature range, more than 100 K, as evidenced by DSC studies and POM observations. The thermogravimetric analysis (TG) indicated a very good thermal stability of these samples up to the isotropization temperatures and over the whole temperature range of the liquid crystalline phase existence. Both complexes displayed a solid-state emission with quantum yields up to 8% at ambient temperature. The electrical properties of the new metallomesogens were investigated by variable temperature dielectric spectroscopy over the entire temperature range of the liquid crystalline phase. It was found that the liquid crystal phases favoured anhydrous proton conduction provided by the hydrogen-bonding networks formed by the NH X moieties (X = halide or oxygen) of the benzoylthiourea ligand in the copper(I) complexes. A proton conductivity of 2.97 × 10-7 S·cm-1 was achieved at 430 K for the chloro-complex and 1.37 × 10-6 S·cm-1 at 440K for the related bromo-complex.
RESUMO
The increasing threat of antimicrobial resistance to all currently available therapeutic agents has urged the development of novel antimicrobials. In this context, a series of new benzoylthiourea derivatives substituted with one or more fluorine atoms and with the trifluoromethyl group have been tested, synthesized, and characterized by IR, NMR, CHNS and crystal X-ray diffraction. The molecular docking has provided information regarding the binding affinity and the orientation of the new compounds to Escherichia coli DNA gyrase B. The docking score predicted the antimicrobial activity of the studied compounds, especially against E. coli, which was further demonstrated experimentally against planktonic and biofilm embedded bacterial and fungal cells. The compounds bearing one fluorine atom on the phenyl ring have shown the best antibacterial effect, while those with three fluorine atoms exhibited the most intensive antifungal activity. All tested compounds exhibited antibiofilm activity, correlated with the trifluoromethyl substituent, most favorable in para position.
Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Tioureia/análogos & derivados , Antibacterianos/síntese química , Antibacterianos/química , Bactérias/efeitos dos fármacos , Sítios de Ligação , Biofilmes/efeitos dos fármacos , Fungos/efeitos dos fármacos , Ligantes , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Acoplamento Molecular , Eletricidade Estática , Tioureia/síntese química , Tioureia/química , Tioureia/farmacologiaRESUMO
Organocatalysis and aqueous reactions are identified as the focus of the greening of chemistry. Combining these two strategies effectively remains an interesting challenge in organic synthesis. Herein, we used pyrrolidine-based benzoylthiourea 1c to catalyze the asymmetric Michael addition of cyclohexanone to various nitroolefins in water to afford the corresponding compounds in moderate to good yields, and with excellent diastereoselectivities (up to >99:1 dr) and enantioselectivities (up to 99% ee).
RESUMO
A benzoylthiourea-pyrrolidine catalyst was developed for the asymmetric Michael addition of ketones to chalcones. The corresponding products were obtained in high yields with high level of diastereoselectivities (up to 99:1 dr) and high level of enantioselectivities (up to 94% ee) under mild conditions.
Assuntos
Chalconas/síntese química , Cetonas/química , Pirrolidinas/química , Tioureia/análogos & derivados , Catálise , Chalconas/química , Conformação Molecular , Estereoisomerismo , Tioureia/químicaRESUMO
The design and development of new luminescent metallogels formed by cyclometalated palladium(II) complexes in protic solvents were investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and rheology. Cyclometalated palladium(II) complexes based on imine ligand and ancillary benzoylthiourea (BTU) ligand showed red emission in solid and gel states. The formation of a lyotropic liquid crystal phase was observed for the complex bearing shorter alkyl groups on the BTU ligand. This complex also behaved as a thermotropic liquid crystal that displays a monotropic smectic A phase (SmA). Dynamic rheology measurements (frequency sweep in the 5-90 °C range) of the 1-decanol solution of palladium(II) complexes highlighted their supramolecular self-association ability to generate 3D networks and form gels as a final result.
RESUMO
Novel benzoylthioureas, N-((5-chloropyridin-2yl)carbamothioyl)benzamide, (HL1), N-((2-chloropyridin-3yl)carbamothioyl)benzamide, (HL2), N-((5-bromopyridin-2yl)carbamothioyl)benzamide, (HL3) and N-(Naphthalene-1-yl(phenyl)carbamothioyl)benzamide, (HL4), were synthesized. Their characterizations were made by FT-IR,1H NMR and 13C NMR spectrophotometric analysis. Single crystal X-ray diffraction measurements were conducted to determine the crystal structure of HL1 and HL4. The HL1 crystallization conditions are: in the monoclinic crystal system with P21/c space group, Z = 2, a = 8.118(2) Å, b = 12.056(3) Å, c = 13.753(4) Å. HL4crystallization conditions are: in the orthorhombic crystal system with Pbca space group, Z = 8, a = 19.597(9) Å, b = 8.270(4) Å, c = 24.299(11) Å. Investigation of photodynamic and antiinflamatory effects of these compounds revealed that they are potent adducts. Using these derivatives, mammalian macrophages were stimulated with LPS to test their anti-inflammatory activity. Based on pro-inflammatory cytokine production levels, the photodynamic anti-inflammatory activity of these adducts were found to differ. Our results showedthat benzoylthioureas can be used as potential photodynamic therapy agents to suppress the excessive inflammatory reactions encountered in autoimmune and inflammatory disorders.
Assuntos
Fotoquimioterapia , Animais , Anti-Inflamatórios/farmacologia , Cristalografia por Raios X , Macrófagos , Fotoquimioterapia/métodos , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Benzoylthiourea derivatives feature several donor atoms capable of coordinating to metal centers. We report here a series of Ru(η6 -p-cymene) complexes employing benzoylthiourea derivatives as ligands. Such ligands often coordinate to metal centers through their S and O donor atoms. We isolated complexes where the ligands were mono- or bidentately coordinated to Ru involving the S donor atom and surprisingly in bidentate coordination mode a deprotonated thiourea nitrogen resulting in a 4-membered ring structure around the metal center. DFT calculations were used to explain the differences in coordination behavior. These were complemented by stability studies and biological investigations of the compounds as anticancer agents. Several of the synthesized derivatives exhibited significant cell growth inhibitory activity, with the complexes featuring bidentate ligands being more potent than their monodentate counterparts. This can be explained by the higher stability of the former under the conditions employed in cell culture assays.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Rutênio/farmacologia , Tioureia/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Rutênio/química , Relação Estrutura-Atividade , Tioureia/análogos & derivados , Tioureia/químicaRESUMO
Two products of the reactions of CuI with 1-benzoyl-3-(4-bromophenyl)thiourea and with 1-benzoyl-3-(2-iodophenyl)thiourea have been obtained and characterized, namely poly[[[1-benzoyl-3-(4-bromophenyl)thiourea-κS]-µ3-iodido-copper(I)] acetone hemisolvate], {[CuI(C14H11BrN2OS)]·0.5C3H6O}n, and poly[µ4-iodido-µ3-iodido-[N-(benzo[d]thiazol-2-yl)benzamide-κN]dicopper(I)], [Cu2I2(C14H10N2OS)]n. Their structures, determined by single-crystal X-ray diffraction analysis, exhibit different stoichiometries and molecular organizations; however, both compounds are polymeric and possess close Cu...Cu contacts. The first product contains a (CuI)n double chain supported by the thiourea derivative coordinated via the S atom. In the second case, the ligand undergoes dehalogenation and cyclization to form N-(benzo[d]thiazol-2-yl)benzamide that serves as the N-donor ligand which is connected to both sides of a (CuI)n quadruple chain. In both hybrid inorganic chains, I atoms bridge three or four Cu atoms. The coordination centres adopt more or less distorted tetrahedral geometries. The structures of the (CuI)n kernels of the ribbons are similar to fragments of the layers in high-pressure phase V copper(I) iodide. Only weak S...O, C-H...O, C-H...I and π-π interactions hold the ribbons together, allowing the formation of crystals.
RESUMO
BACKGROUND: Rice sheath blight is a globally important rice disease. Unfortunately, this critical disease has not been effectively controlled, and the intensive and continuous use of the same fungicide might increase the risk of resistance development in the pathogen. To discover new active agents against rice sheath blight, in this study, three series of ß-carboline urea, benzoylurea and benzoylthiourea derivatives were designed, synthesized and evaluated for in vitro and in vivo fungicidal activity against Rhizoctonia solani. RESULTS: All these compounds (EC50 : 0.131-1.227 mmol L-1 ) exhibited better fungicidal activity than harmine itself (EC50 : 2.453 mmol L-1 ). Significantly, compound 17c (EC50 : 0.131 mmol L-1 ) displayed the best efficacy in vitro and superior fungicidal activity compared with validamycin A (EC50 : 0.397 mmol L-1 ). Moreover, the in vivo bioassay also indicated that compound 17c could be effective for the control of rice sheath blight. CONCLUSION: Based on the bioassay result and quantitative structure-activity relationship (QSAR) information, structure modification in ß-carboline warrants further investigation and its benzoylurea derivative 17c, which showed the best fungicidal activities, could emerge as a potential fungicide against rice sheath blight. © 2018 Society of Chemical Industry.
Assuntos
Carbolinas , Desenho de Fármacos , Fungicidas Industriais , Doenças das Plantas/prevenção & controle , Relação Quantitativa Estrutura-Atividade , Rhizoctonia , Carbolinas/química , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Doenças das Plantas/microbiologia , Ureia/químicaRESUMO
1-Benzoylthioureas contain both carbonyl and thiocarbonyl functional groups and are of interest for their biological activity, metal coordination ability and involvement in hydrogen-bond formation. Two novel 1-benzoylthiourea derivatives, namely 1-benzoyl-3-(3,4-dimethoxyphenyl)thiourea, C16H16N2O3S, (I), and 1-benzoyl-3-(2-hydroxypropyl)thiourea, C11H14N2O2S, (II), have been synthesized and characterized. Compound (I) crystallizes in the space group P-1, while (II) crystallizes in the space group P21/c. In both structures, intramolecular N-H...O hydrogen bonding is present. The resulting six-membered pseudo-rings are quasi-aromatic and, in each case, interact with phenyl rings via stacking-type interactions. C-H...O, C-H...S and C-H...π interactions are also present. In (I), there is one molecule in the asymmetric unit. Pairs of molecules are connected via two intermolecular N-H...S hydrogen bonds, forming centrosymmetric dimers. In (II), there are two symmetry-independent molecules that differ mainly in the relative orientations of the phenyl rings with respect to the thiourea cores. Additional strong hydrogen-bond donor and acceptor -OH groups participate in the formation of intermolecular N-H...O and O-H...S hydrogen bonds that join molecules into chains extending in the [001] direction.
RESUMO
In the title compound, C14H18N2O2S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-meth-oxy-benzoyl ring, with a dihedral angle of 63.0â (3)°. The central N-C(=S)-N(H)-C(=O) bridge is twisted with an N-C-N-C torsion angle of 74.8â (6)°. In the crystal, mol-ecules are linked by N-Hâ¯O and C-Hâ¯O hydrogen bonds, forming chains along the c-axis direction. Adjacent chains are linked by C-Hâ¯π inter-actions, forming layers parallel to the ac plane. The layers are linked by offset π-π inter-actions [inter-centroid distance = 3.927â (3)â Å], forming a supra-molecular three-dimensional structure.
RESUMO
In the title compound, C13H16N2O2S, the pyrrolidine ring has a twisted conformation on the central -CH2-CH2- bond. Its mean plane is inclined to the 4-meth-oxy-benzoyl ring by 72.79â (15)°. In the crystal, mol-ecules are linked by N-Hâ¯O and C-Hâ¯O hydrogen bonds to the same O-atom acceptor, forming chains along [001]. The chains are linked via slipped parallel π-π inter-actions [inter-centroid distance = 3.7578â (13)â Å], forming undulating slabs parallel to (100).