Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 310(1): L50-8, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26566905

RESUMO

Carvedilol functions as a nonselective ß-adrenergic receptor (AR)/α1-AR antagonist that is used for treatment of hypertension and heart failure. Carvedilol has been shown to function as an inverse agonist, inhibiting G protein activation while stimulating ß-arrestin-dependent signaling and inducing receptor desensitization. In the present study, short-circuit current (Isc) measurements using human airway epithelial cells revealed that, unlike ß-AR agonists, which increase Isc, carvedilol decreases basal and 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate-stimulated current. The decrease in Isc resulted from inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR). The carvedilol effect was abolished by pretreatment with the ß2-AR antagonist ICI-118551, but not the ß1-AR antagonist atenolol or the α1-AR antagonist prazosin, indicating that its inhibitory effect on Isc was mediated through interactions with apical ß2-ARs. However, the carvedilol effect was blocked by pretreatment with the microtubule-disrupting compound nocodazole. Furthermore, immunocytochemistry experiments and measurements of apical CFTR expression by Western blot analysis of biotinylated membranes revealed a decrease in the level of CFTR protein in monolayers treated with carvedilol but no significant change in monolayers treated with epinephrine. These results demonstrate that carvedilol binding to apical ß2-ARs inhibited CFTR current and transepithelial anion secretion by a mechanism involving a decrease in channel expression in the apical membrane.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carbazóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/efeitos dos fármacos , Propanolaminas/farmacologia , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Ânions/metabolismo , Arrestinas/metabolismo , Carvedilol , Células Cultivadas , AMP Cíclico/metabolismo , Células Epiteliais/metabolismo , Humanos , Transdução de Sinais , beta-Arrestinas
2.
Front Pharmacol ; 13: 832529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250580

RESUMO

The sweet taste receptor is rather unique, recognizing a diverse repertoire of natural or synthetic ligands, with a surprisingly large structural diversity, and with potencies stretching over more than six orders of magnitude. Yet, it is not clear if different cell-based assays can faithfully report the relative potencies and efficacies of these molecules. Indeed, up to now, sweet taste receptor agonists have been almost exclusively characterized using cell-based assays developed with overexpressed and promiscuous G proteins. This non-physiological coupling has allowed the quantification of receptor activity via phospholipase C activation and calcium mobilization measurements in heterologous cells on a FLIPR system, for example. Here, we developed a novel assay for the human sweet taste receptor where endogenous G proteins and signaling pathways are recruited by the activated receptor. The effects of several sweet taste receptor agonists and other types of modulators were recorded by measuring changes in dynamic mass redistribution (DMR) using an Epic® reader. Potency and efficacy values obtained in the DMR assay were compared to those results obtained with the classical FLIPR assay. Results demonstrate that for some ligands, the two assay systems provide similar information. However, a clear bias for the FLIPR assay was observed for one third of the agonists evaluated, suggesting that the use of non-physiological coupling may influence the potency and efficacy of sweet taste receptor ligands. Replacing the promiscuous G protein with a chimeric G protein containing the C-terminal tail 25 residues of the physiologically relevant G protein subunit Gαgustducin reduced or abrogated bias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA