Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Genomics ; 116(2): 110795, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38228248

RESUMO

PBC is an autoimmune-mediated liver disease, and intrahepatic biliary epithelial cells (IBECs) are the target cells of early damage. Previous studies found that miRNAs and inflammation is closely related to PBC. In this study, we extracted exosomes from serum and human IBECs supernatant, and RNA-sequence analyzed the expression profiles of miRNAs. Elisa measured the levels of inflammatory cytokines. RT- qPCR and western blot detected the levels of miR-122-5p, p38 and p-p38. The results showed that 263 differentially expressed (DE) miRNAs were identified in serum exosomes of PBC patients. The levels of IL-1ß, IL-6, IL-12, IL-17 A, IFN-γ, TNF-α and TGF-ß1 in peripheral blood of PBC patients were higher than those of normal controls. According to the validation results and previous literature, exosomal miR-122-5p was finally selected as the study object, and correlated with inflammatory factors. In vitro experiments further found that exosomal miR-122-5p may derive from hepatic stellate cells (HSCs), and can be HIBECs intake, and influence HIBECs inflammatory factor levels though p38 MAPK signaling pathways. This may provide a new strategy for the treatment of PBC.


Assuntos
Exossomos , MicroRNAs , Humanos , Citocinas/genética , Citocinas/metabolismo , Exossomos/genética , Exossomos/metabolismo , Células Estreladas do Fígado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Liver Int ; 44(2): 541-558, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38014627

RESUMO

BACKGROUND & AIMS: Alagille syndrome (ALGS) manifests with peripheral intrahepatic bile duct (IHBD) paucity, which can spontaneously resolve. In a model for ALGS, Jag1Ndr/Ndr mice, this occurs with distinct architectural mechanisms in hilar and peripheral IHBDs. Here, we investigated region-specific IHBD characteristics and addressed whether IGF1, a cholangiocyte mitogen that is downregulated in ALGS and in Jag1Ndr/Ndr mice, can improve biliary outcomes. METHODS: Intrahepatic cholangiocyte organoids (ICOs) were derived from hilar and peripheral adult Jag1+/+ and Jag1Ndr/Ndr livers (hICOs and pICOs, respectively). ICOs were grown in Matrigel or microwell arrays, and characterized using bulk RNA sequencing, immunofluorescence, and high throughput analyses of nuclear sizes. ICOs were treated with IGF1, followed by analyses of growth, proliferation, and death. CellProfiler and Python scripts were custom written for image analyses. Key results were validated in vivo by immunostaining. RESULTS: Cell growth assays and transcriptomics demonstrated that Jag1Ndr/Ndr ICOs were less proliferative than Jag1+/+ ICOs. IGF1 specifically rescued survival and growth of Jag1Ndr/Ndr pICOs. Jag1Ndr/Ndr hICOs were the least proliferative, with lower Notch signalling and an enrichment of hepatocyte signatures and IGF uptake/transport pathways. In vitro (Jag1Ndr/Ndr hICOs) and in vivo (Jag1Ndr/Ndr hilar portal tracts) analyses revealed ectopic HNF4a+ hepatocytes. CONCLUSIONS: Hilar and peripheral Jag1Ndr/Ndr ICOs exhibit differences in Notch signalling status, proliferation, and cholangiocyte commitment which may result in cholangiocyte-to-hepatocyte transdifferentiation. While Jag1Ndr/Ndr pICOs can be rescued by IGF1, hICOs are unresponsive, perhaps due to their hepatocyte-like state and/or expression of IGF transport components. IGF1 represents a potential therapeutic for peripheral bile ducts.


Assuntos
Síndrome de Alagille , Sistema Biliar , Camundongos , Animais , Síndrome de Alagille/genética , Ductos Biliares , Ductos Biliares Intra-Hepáticos , Organoides/metabolismo
3.
Dig Dis Sci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160386

RESUMO

BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disorder without effective medical treatment which is characterized by inflammation and fibrotic structures around the bile ducts. Biliary epithelial cells (cholangiocytes) are the target and potential disease drivers in PSC, yet little is known if cholangiocytes from PSC patients differ from non-PSC controls. To characterize cholangiocytes at early rather than end-stage disease, cholangiocyte organoids (COs) were derived from diseased bile ducts of PSC patients and compared to organoids generated from disease controls. METHODS: Cholangiocytes were obtained during endoscopic retrograde cholangiopancreatography (ERCP) brushing of diseased bile duct areas and expanded as organoids using previously established culture methods. Stable CO lines were analyzed for cell type identity, basic cholangiocyte function, and transcriptomic signature. RESULTS: We demonstrate that cholangiocytes, derived from the damaged area within the bile ducts of PSC patients, can be expanded in culture without displaying functional or genetic disease-related features. We further show that COs from patients who later were diagnosed with dysplasia exhibit higher expression of the cancer-associated genes PGC, FXYD2, MIR4435-2HG, and HES1. CONCLUSIONS: Our results demonstrate that PSC organoids are largely similar to control organoids after culture and highlight the significance of COs as a tool for regenerative medicine approaches as well as their potential for discovering new potential biomarkers for diagnosing cholangiocarcinoma.

4.
Drug Chem Toxicol ; : 1-9, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38192027

RESUMO

Tauroursodeoxycholic acid (TUDCA) can activate farnesoid X receptor (FXR) to involve in the formation of gallstones. Here, this study aimed to probe the potential mechanism of TUDCA-FXR network in the formation of bile duct stone. The levels of TUDCA, FXR and NCK1 were decreased, while the level of miR-107 was increased in the serum of bile duct stone patients. FXR expression was positively correlated with TUDCA or NCK1 expression in patients, moreover, TUDCA pretreatment in biliary epithelial cells increased the levels of FXR and NCK1, and rescued the decrease of NCK1 caused by FXR knockdown in cells. Then functional analysis showed FXR knockdown caused apoptosis and endoplasmic reticulum stress (ERS) as well as suppressed proliferation in biliary epithelial cells in vitro, which were attenuated by TUDCA pretreatment or NCK1 overexpression Mechanistically, NCK1 was a target of miR-107, which was up-regulated by FXR silencing, and FXR knockdown-induced decrease of NCK1 was rescued by miR-107 inhibition. Additionally, miR-107 expression was negatively correlated with TUDCA expression in bile duct stone patients, and TUDCA pretreatment in biliary epithelial cells decreased miR-107 expression by FXR. Functionally, the pretreatment of TUDCA or FXR agonist suppressed miR-107-evoked apoptosis and ERS in biliary epithelial cells. In conclusion, TUDCA up-regulates FXR expression to activate NCK1 through absorbing miR-107, thus suppressing the apoptosis and ERS in biliary epithelial cells, these results provided a theoretical basis for elucidating the mechanism of bile duct stone formation.

5.
Genes Cells ; 27(3): 192-201, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34967957

RESUMO

In pregnant mice, the maternal liver expands drastically during gestation, which is believed to be essential to accommodate various metabolic demands caused by physiological changes and fetal growth. Although hepatocyte proliferation and hypertrophy have been reported, little is known about the dynamics of biliary epithelial cells (BECs), which comprise the bile duct epithelium in the liver. Here, we show that BECs transiently proliferate during the early stage of gestation. Lineage tracing revealed that BEC progeny were retained in the bile duct epithelium and did not differentiate into hepatocytes, indicating BEC self-replication during pregnancy. RNA-sequencing analysis of BECs identified their early pregnancy-signature transcriptomes, which highlighted Yes-associated protein (YAP) signaling-related genes. Nuclear accumulation of YAP was enhanced in BECs during pregnancy but was barely detectable in hepatocytes. In addition, the pharmacological inhibition of YAP attenuated BEC proliferation and liver weight gain during pregnancy. Our results delineate the proliferation and transcriptomic dynamics of BECs during pregnancy and suggest the relevance of YAP-mediated signals.


Assuntos
Hepatócitos , Fígado , Animais , Proliferação de Células , Células Epiteliais/metabolismo , Feminino , Hepatócitos/metabolismo , Camundongos , Gravidez , Transdução de Sinais
6.
Zhonghua Gan Zang Bing Za Zhi ; 31(2): 174-180, 2023 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-37137833

RESUMO

Objective: To investigate the role of the CXC chemokine receptor 1 (CXCR1)/CXC chemokine ligand 8 (CXCL8) axis in the abnormal proliferation of bile duct epithelial cells in primary biliary cholangitis (PBC). Methods: 30 female C57BL/6 mice were randomly divided into the PBC model group (PBC group), reparixin intervention group (Rep group), and blank control group (Con group) in an in vivo experiment. PBC animal models were established after 12 weeks of intraperitoneal injection of 2-octanoic acid coupled to bovine serum albumin (2OA-BSA) combined with polyinosinic acid polycytidylic acid (polyI:C). After successful modelling, reparixin was injected subcutaneously into the Rep group (2.5 mg · kg(-1) · d(-1), 3 weeks). Hematoxylin-eosin staining was used to detect histological changes in the liver. An immunohistochemical method was used to detect the expression of cytokeratin 19 (CK-19). Tumor necrosis factor-α (TNF-α), γ-interferon (IFN-γ) and interleukin (IL)-6 mRNA expression were detected by qRT-PCR. Western blot was used to detect nuclear transcription factor-κB p65 (NF-κB p65), extracellularly regulated protein kinase 1/2 (ERK1/2), phosphorylated extracellularly regulated protein kinase 1/2 (p-ERK1/2), Bcl-2-related X protein (Bax), B lymphoma-2 (Bcl-2), and cysteine proteinase-3 (Caspase- 3) expression. Human intrahepatic bile duct epithelial cells were divided into an IL-8 intervention group (IL-8 group), an IL-8+Reparicin intervention group (Rep group), and a blank control group (Con group) in an in vitro experiment. The IL-8 group was cultured with 10 ng/ml human recombinant IL-8 protein, and the Rep group was cultured with 10 ng/ml human recombinant IL-8 protein, followed by 100 nmol/L Reparicin. Cell proliferation was detected by the EdU method. The expression of TNF-α, IFN-γ and IL-6 was detected by an enzyme-linked immunosorbent assay. The expression of CXCR1 mRNA was detected by qRT-PCR. The expression of NF-κB p65, ERK1/2 and p-ERK1/2 was detected by western blot. A one-way ANOVA was used for comparisons between data sets. Results: The results of in vivo experiments revealed that the proliferation of cholangiocytes, the expression of NF-κB and ERK pathway-related proteins, and the expression of inflammatory cytokines were increased in the Con group compared with the PBC group. However, reparixin intervention reversed the aforementioned outcomes (P<0.05). In vitro experiments showed that the proliferation of human intrahepatic cholangiocyte epithelial cells, the expression of CXCR1 mRNA, the expression of NF-κB and ERK pathway-related proteins, and the expression of inflammatory cytokines were increased in the IL-8 group compared with the Con group. Compared with the IL-8 group, the proliferation of human intrahepatic cholangiocyte epithelial cells, NF-κB and ERK pathway-related proteins, and inflammatory indicators were significantly reduced in the Rep group (P < 0.05). Conclusion: The CXCR1/CXCL8 axis can regulate the abnormal proliferation of bile duct epithelial cells in PBC, and its mechanism of action may be related to NF-κB and ERK pathways.


Assuntos
Interleucina-8 , Cirrose Hepática Biliar , Animais , Camundongos , Feminino , Humanos , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptores de Interleucina-8A/metabolismo , Cirrose Hepática Biliar/patologia , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Ductos Biliares/patologia , Interleucina-6 , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Interferon gama/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo
7.
Gastroenterology ; 160(3): 847-862, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33127392

RESUMO

BACKGROUND AND AIMS: The Hippo pathway and its downstream effectors YAP and TAZ (YAP/TAZ) are heralded as important regulators of organ growth and regeneration. However, different studies provided contradictory conclusions about their role during regeneration of different organs, ranging from promoting proliferation to inhibiting it. Here we resolve the function of YAP/TAZ during regeneration of the liver, where Hippo's role in growth control has been studied most intensely. METHODS: We evaluated liver regeneration after carbon tetrachloride toxic liver injury in mice with conditional deletion of Yap/Taz in hepatocytes and/or biliary epithelial cells, and measured the behavior of different cell types during regeneration by histology, RNA sequencing, and flow cytometry. RESULTS: We found that YAP/TAZ were activated in hepatocytes in response to carbon tetrachloride toxic injury. However, their targeted deletion in adult hepatocytes did not noticeably impair liver regeneration. In contrast, Yap/Taz deletion in adult bile ducts caused severe defects and delay in liver regeneration. Mechanistically, we showed that Yap/Taz mutant bile ducts degenerated, causing cholestasis, which stalled the recruitment of phagocytic macrophages and the removal of cellular corpses from injury sites. Elevated bile acids activated pregnane X receptor, which was sufficient to recapitulate the phenotype observed in mutant mice. CONCLUSIONS: Our data show that YAP/TAZ are practically dispensable in hepatocytes for liver development and regeneration. Rather, YAP/TAZ play an indirect role in liver regeneration by preserving bile duct integrity and securing immune cell recruitment and function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colestase/patologia , Regeneração Hepática/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Ductos Biliares/patologia , Tetracloreto de Carbono/administração & dosagem , Tetracloreto de Carbono/toxicidade , Proliferação de Células/genética , Doença Hepática Induzida por Substâncias e Drogas/complicações , Colestase/etiologia , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Via de Sinalização Hippo , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas de Sinalização YAP
8.
Biotechnol Bioeng ; 118(7): 2572-2584, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33811654

RESUMO

The integration of a bile drainage structure into engineered liver tissues is an important issue in the advancement of liver regenerative medicine. Primary biliary cells, which play a vital role in bile metabolite accumulation, are challenging to obtain in vitro because of their low density in the liver. In contrast, large amounts of purified hepatocytes can be easily acquired from rodents. The in vitro chemically induced liver progenitors (CLiPs) from primary mature hepatocytes offer a platform to produce biliary cells abundantly. Here, we generated a functional CLiP-derived tubular bile duct-like structure using the chemical conversion technology. We obtained an integrated tubule-hepatocyte tissue via the direct coculture of hepatocytes on the established tubular biliary-duct-like structure. This integrated tubule-hepatocyte tissue was able to transport the bile, as quantified by the cholyl-lysyl-fluorescein assay, which was not observed in the un-cocultured structure or in the biliary cell monolayer. Furthermore, this in vitro integrated tubule-hepatocyte tissue exhibited an upregulation of hepatic marker genes. Together, these findings demonstrated the efficiency of the CLiP-derived tubular biliary-duct-like structures regarding the accumulation and transport of bile.


Assuntos
Bile/metabolismo , Sistema Biliar/metabolismo , Diferenciação Celular , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Células-Tronco/metabolismo , Animais , Sistema Biliar/citologia , Transporte Biológico Ativo , Técnicas de Cocultura , Células Epiteliais/citologia , Hepatócitos/citologia , Masculino , Ratos , Ratos Wistar , Células-Tronco/citologia
9.
Cell Biol Toxicol ; 37(6): 935-949, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33474710

RESUMO

Microcystin-leucine-arginine (MC-LR) was produced by toxic cyanobacteria, which has been shown to have potent hepatotoxicity. Our previous study has proved that MC-LR were able to promote intrahepatic biliary epithelial cell excessive proliferation. However, the underlying mechanism is not yet entirely clarified. Herein, mice were fed with different concentrations (1, 7.5, 15, or 30 µg/L) of MC-LR by drinking water for 6 months. As the concentration of MC-LR increased, a growing number of macrophages were evaluated in the portal area of the mouse liver. Next, we built a co-culture system to explore the interaction between macrophages (THP-1 cells) and human intrahepatic biliary epithelial cells (HiBECs) in the presence of MC-LR. Under the exposure of MC-LR, HiBECs secreted a large amount of inflammatory factors (IL-6, IL-8, IL-1ß, COX-2, XCL-1) and chemokine (MCP-1), which produced a huge chemotactic effect on THP-1 cells and induced elevation of the surface M2-subtype biomarkers (IL-10, CD163, CCL22, and Arg-1). In turn, high content of IL-6 in the medium activated JAK2/STAT3, MEK/ERK, and PI3K/AKT pathways in HiBECs, inducing HiBEC abnormal proliferation and migration. Together, these results suggested that MC-LR-mediated interaction between HiBECs and macrophages induced the M2-type polarization of macrophages, and activated IL-6/JAK2/STAT3, MEK/ERK, and PI3K/AKT pathways in HiBECs, further enhanced cell proliferation, improved cell migration, and hindered cell apoptosis by activating p-STAT3. MC-LR stimulates HiBECs to produce various inflammatory factors, recruiting a large number of macrophages and promoting the differentiation of macrophages into M2-type. In turn, the M2 macrophages could also produce amounts of IL-6 and activate STAT3 through JAK2/STAT3, MEK/ERK, and PI3K/AKT pathways in HiBECs, resulting in the promotion of cell proliferation, inhibition of apoptosis, and enhancement of migration.


Assuntos
Células Epiteliais , Fosfatidilinositol 3-Quinases , Animais , Proliferação de Células , Células Cultivadas , Macrófagos , Camundongos
10.
Exp Parasitol ; 231: 108173, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34742714

RESUMO

Extracellular vesicles (EVs) from parasitic helminths play an important role in immunomodulation. However, EVs are little studied in the important parasite Fasciola gigantica. Here the ability of EVs from F. gigantica to induce cellular response to stress (reactive oxygen species generation, autophage and DNA damage response) in human intrahepatic biliary epithelial cells (HIBEC) was investigated. F. gigantica-derived EVs were isolated by ultracentrifugation, and identified with transmission electron microscopy, nanoparticle size analysis and parasite-derived EV markers. Internalization of EVs by HIBEC was determined by confocal immunofluorescence microscopy and flow cytometry. ROS levels in HIBEC were detected by molecular probing. EVs-induced autophagy and DNA-damaging effects were determined by evaluating expression levels of light chain 3B protein (LC3B), phosphor- H2A.X and phosphor-Chk1, respectively. Results revealed that EVs with sizes predominately ranging from 39 to 110 nm in diameter were abundant in adult F. gigantica and contained the parasite-derived marker proteins enolase and 14-3-3, and EVs were internalized by HIBEC. Further, uptake of EVs into HIBEC was associated with increased levels of reactive oxygen species, LC3Ⅱ, phosphor-H2A.X and phosphor-Chk1, suggesting EVs are likely to induce autophagy and DNA damage & repair processes. These results indicate F. gigantica EVs are associated with modulations of host cell responses and have a potential important role in the host-parasite interactions.


Assuntos
Vesículas Extracelulares/fisiologia , Fasciola/fisiologia , Imunomodulação/fisiologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Anticorpos Anti-Helmínticos/isolamento & purificação , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Autofagia/fisiologia , Western Blotting , Búfalos/parasitologia , Linhagem Celular , Vesículas Extracelulares/parasitologia , Fasciola/ultraestrutura , Citometria de Fluxo , Interações Hospedeiro-Parasita , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Fígado/parasitologia , Microscopia Confocal , Microscopia de Fluorescência , Coelhos , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
11.
Zhonghua Gan Zang Bing Za Zhi ; 29(6): 500-504, 2021 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-34225423

RESUMO

Primary biliary cholangitis (PBC) is an autoimmune liver disease, mainly characterized by chronic progressive cholestasis. The root cause of PBC is the loss of immune tolerance to autoantigen E2 subunit of pyruvate dehydrogenase (PDC-E2). The unique immunobiological characteristics of intrahepatic bile duct epithelial cells make it an active participant in the pathogenesis of PBC. In recent years, the detection rate of PBC has been increasing year by year, but the clinical situation of ursodeoxycholic acid monotherapy has not changed. Therefore, an in-depth understanding of the immune pathogenesis of PBC will help clinicians better prevent and treat diseases.


Assuntos
Doenças Autoimunes , Colangite , Cirrose Hepática Biliar , Autoantígenos , Doenças Autoimunes/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangite/patologia , Células Epiteliais , Humanos , Cirrose Hepática Biliar/etiologia , Cirrose Hepática Biliar/patologia
12.
J Cell Mol Med ; 24(2): 1268-1275, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851780

RESUMO

Primary biliary cholangitis (PBC) is an autoimmune disease characterized by chronic destruction of the bile ducts. A major unanswered question regarding the pathogenesis of PBC is the precise mechanisms of small bile duct injury. Emperipolesis is one of cell-in-cell structures that is a potential histological hallmark associated with chronic hepatitis B. This study aimed to clarify the pathogenesis and characteristics of emperipolesis in PBC liver injury. Sixty-six PBC patients, diagnosed by liver biopsy combined with laboratory test, were divided into early-stage PBC (stages I and II, n = 39) and late-stage PBC (stages III and IV, n = 27). Emperipolesis was measured in liver sections stained with haematoxylin-eosin. The expressions of CK19, CD3, CD4, CD8, CD20, Ki67 and apoptosis of BECs were evaluated by immunohistochemistry or immunofluorescence double labelling. Emperipolesis was observed in 62.1% of patients with PBC, and BECs were predominantly host cells. The number of infiltrating CD3+ and CD8+ T cells correlated with the advancement of emperipolesis (R2  = 0.318, P < .001; R2  = 0.060, P < .05). The cell numbers of TUNEL-positive BECs and double staining for CK19 and Ki67 showed a significant positive correlation with emperipolesis degree (R2  = 0.236, P < .001; R2  = 0.267, P < .001). We conclude that emperipolesis mediated by CD8+ T cells appears to be relevant to apoptosis of BEC and thus may aggravate the further injury of interlobular bile ducts.


Assuntos
Apoptose , Ductos Biliares/patologia , Linfócitos T CD8-Positivos/imunologia , Emperipolese , Células Epiteliais/patologia , Cirrose Hepática Biliar/fisiopatologia , Ductos Biliares/imunologia , Ductos Biliares/lesões , Estudos de Casos e Controles , Proliferação de Células , Células Epiteliais/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Biochem Biophys Res Commun ; 521(2): 492-498, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31677783

RESUMO

Microcystin-leucine arginine (MC-LR) is a potent specific hepatotoxin produced by cyanobacteria in diverse water systems, and it has been documented to induce liver injury and hepatocarcinogenesis. However, its toxic effects on intrahepatic biliary epithelial cells have not been invested in detail. In this study, we aimed to investigate the effects of MC-LR exposure on the intrahepatic biliary epithelial cells in the liver. MC-LR was orally administered to mice at 1 µg/L, 7.5 µg/L, 15 µg/L, or 30 µg/L for 180 consecutive days for histopathological and immunoblot analysis. We observed that MC-LR can enter intrahepatic bile duct tissue and induce hyperplasia of mice. Human primary intrahepatic biliary epithelial cells (HiBECs) were cultured with various concentrations of MC-LR for 24 h, meanwhile the cell viability and proteins level were detected. Western blotting analysis revealed that MC-LR increased RSK phosphorylation via ERK signaling. RSK participated in cell proliferation and cell cycle progression. Taken together, after chronic exposure, MC-LR-treated mice exhibited abnormal bile duct hyperplasia and thickened bile duct morphology through activating the ERK-RSK signaling. These data support the potential toxic effects of MC-LR on bile duct tissue of the liver.


Assuntos
Ductos Biliares/patologia , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/patologia , Hiperplasia/induzido quimicamente , Microcistinas/toxicidade , Animais , Arginina , Células Cultivadas , Humanos , Leucina , Sistema de Sinalização das MAP Quinases , Camundongos , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Development ; 144(14): 2595-2605, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28720653

RESUMO

The intrahepatic biliary network is a highly branched three-dimensional network lined by biliary epithelial cells, but how its branching patterns are precisely established is not clear. We designed a new computer-based algorithm that quantitatively computes the structural differences of the three-dimensional networks. Utilizing the algorithm, we showed that inhibition of Cyclin-dependent kinase 5 (Cdk5) led to reduced branching in the intrahepatic biliary network in zebrafish. Further, we identified a previously unappreciated downstream kinase cascade regulated by Cdk5. Pharmacological manipulations of this downstream kinase cascade produced a crowded branching defect in the intrahepatic biliary network and influenced actin dynamics in biliary epithelial cells. We generated larvae carrying a mutation in cdk5 regulatory subunit 1a (cdk5r1a), an essential activator of Cdk5. cdk5r1a mutant larvae show similar branching defects as those observed in Cdk5 inhibitor-treated larvae. A small-molecule compound that interferes with the downstream kinase cascade rescued the mutant phenotype. These results provide new insights into branching morphogenesis of the intrahepatic biliary network.


Assuntos
Ductos Biliares Intra-Hepáticos/enzimologia , Ductos Biliares Intra-Hepáticos/crescimento & desenvolvimento , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Algoritmos , Animais , Animais Geneticamente Modificados , Simulação por Computador , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Técnicas de Inativação de Genes , Imageamento Tridimensional , Larva/crescimento & desenvolvimento , Larva/metabolismo , Quinases Lim/metabolismo , Modelos Anatômicos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Morfogênese/fisiologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Quinases Ativadas por p21/metabolismo
15.
J Pathol ; 248(3): 257-259, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883752

RESUMO

Extensive bile ductular reactions (DRs) accompany many cholestatic liver diseases such as primary biliary cholangitis and primary sclerosing cholangitis (PSC) as well as parenchymal liver cell diseases such as alcoholic liver disease, non-alcoholic steatohepatitis and HCV and HBV infections. DRs originate from bile ducts or hepatocytes after damage and can be identified by expression of markers associated with cholangiocytes, often being associated with disease progression and fibrosis. In a recent issue of The Journal of Pathology, Govaere et al employed high-throughput RNA sequencing to compare the transcriptomic profiles of DR cells from liver diseases of different aetiology; HCV infection affecting hepatocytes and PSC initially affecting biliary epithelial cells. Both DR transcriptomes were markedly different from that of their neighbouring hepatocytes and 330 genes were significantly differently expressed between the DRs of the HCV and PSC liver diseases. Exploring such gene expression profiles could enable therapeutic targeting of DRs, on the one hand to inhibit liver fibrosis and inflammation and conversely to promote hepatocyte and cholangiocyte regeneration. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Colangite Esclerosante , Hepatopatias , Bile , Ductos Biliares , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fígado , Reino Unido
16.
J Autoimmun ; 105: 102328, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548157

RESUMO

Primary Biliary Cholangitis (PBC) is an uncommon, chronic, cholangiopathy of autoimmune origin and unknown etiology characterized by positive anti-mitochondrial autoantibodies (AMA), female preponderance and progression to cirrhosis if left untreated. The diagnosis is based on AMA- or PBC-specific anti-nuclear antibody (ANA)-positivity in the presence of a cholestatic biochemical profile, histologic confirmation being mandatory only in seronegative cases. First-line treatment is ursodeoxycholic acid (UDCA), which is effective in preventing disease progression in about two thirds of the patients. The only approved second-line treatment is obeticholic acid. This article summarizes the most relevant conclusions of a meeting held in Lugano, Switzerland, from September 23rd-25th 2018, gathering basic and clinical scientists with various background from around the world to discuss the latest advances in PBC research. The meeting was dedicated to Ian Mackay, pioneer in the field of autoimmune liver diseases. The role of liver histology needs to be reconsidered: liver pathology consistent with PBC in AMA-positive individuals without biochemical cholestasis is increasingly reported, raising the question as to whether biochemical cholestasis is a reliable disease marker for both clinical practice and trials. The urgent need for new biomarkers, including more accurate markers of cholestasis, was also widely discussed during the meeting. Moreover, new insights in interactions of bile acids with biliary epithelia in PBC provide solid evidence of a role for impaired epithelial protection against potentially toxic hydrophobic bile acids, raising the fundamental question as to whether this bile acid-induced epithelial damage is the cause or the consequence of the autoimmune attack to the biliary epithelium. Strategies are needed to identify difficult-to-treat patients at an early disease stage, when new therapeutic approaches targeting immunologic pathways, in addition to bile acid-based therapies, may be effective. In conclusion, using interdisciplinary approaches, groundbreaking advances can be expected before long in respect to our understanding of the etiopathogenesis of PBC, with the ultimate aim of improving its treatment.


Assuntos
Anticorpos Antinucleares/imunologia , Doenças Autoimunes/imunologia , Cirrose Hepática Biliar/imunologia , Fígado/imunologia , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/tratamento farmacológico , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/uso terapêutico , Colagogos e Coleréticos/uso terapêutico , Congressos como Assunto , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática Biliar/diagnóstico , Cirrose Hepática Biliar/tratamento farmacológico , Ácido Ursodesoxicólico/uso terapêutico
17.
Int J Mol Sci ; 20(16)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430850

RESUMO

Phosphatidylcholine (PC) translocation into mucus of the intestine was shown to occur via a paracellular transport across the apical/lateral tight junction (TJ) barrier. In case this could also be operative in biliary epithelial cells, this may have implication for the pathogenesis of primary sclerosing cholangitis (PSC). We here evaluated the transport of PC across polarized cholangiocytes. Therefore, the biliary tumor cell line Mz-ChA-1 was grown to confluency. In transwell culture systems the translocation of PC to the apical compartment was analyzed. After 21 days in culture, polarized Mz-ChA-1 cells revealed a predominant apical translocation of choline containing phospholipids including PC with minimal intracellular accumulation. Transport was suppressed by TJ destruction employing chemical inhibitors and pretreatment with siRNA to TJ forming proteins as well as the apical transmembrane mucin 3 as PC acceptor. Apical translocation was dependent on a negative apical electrical potential created by the cystic fibrosis transmembrane conductance regulator (CFTR) and the anion exchange protein 2 (AE2). It was stimulated by apical application of secretory mucins. The results indicated the existence of a paracellular PC passage across apical/lateral TJ of the polarized biliary epithelial tumor cell line Mz-ChA-1. This has implication for the generation of a protective mucus barrier in the biliary tree.


Assuntos
Sistema Biliar/metabolismo , Células Epiteliais/metabolismo , Fosfatidilcolinas/metabolismo , Sistema Biliar/citologia , Neoplasias do Sistema Biliar/metabolismo , Linhagem Celular Tumoral , Polaridade Celular , Células Epiteliais/citologia , Humanos , Junções Íntimas/metabolismo , Transcitose
18.
J Cell Biochem ; 119(2): 2135-2143, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28857276

RESUMO

Biliary epithelial cells (BEC) are closely related to some immune regulatory bile duct diseases. However, the complexity and polymorphism of the morphology and function of bile duct cells have hindered further investigation. Therefore, the aim of this study is to investigate how interleukin-6 (IL-6) affects the migration, cellular senescence, and apoptosis of human intrahepatic biliary epithelial cells (HIBECs). The HIBECs were stimulated by different concentrations of IL-6 (0, 5, 10, 15, and 20 ng/mL, respectively). Transwell assay was performed in order to measure the migration abilities, positive ß-Galactosidase staining for the cellular senescence of HIBECs, MTT assay for changes of proliferation after IL-6 treatment and flow cytometry for cell cycle and apoptosis. The reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting were conducted in order to detect the mRNA and protein expressions of epithelial-mesenchymal transition (EMT) markers in HIBECs. In comparison to the 0 ng/mL group, in the 5, 10, 15, and 20 ng/mL groups, a significant increase in the number of migratory HIBECs, proliferation, along with mRNA and protein expressions of EMT markers was observed. While the mRNA and protein expressions of epithelial markers, the number of ß-galactosidase positive staining cells, as well as apoptosis rate of HIBECs dramatic decreased. Further, the aforementioned changes were significantly more evident in the 15 and 20 ng/mL groups in comparison to the 5 and 10 ng/mL groups. IL-6 may stimulate EMT, enhance the migration and proliferation, and inhibit apoptosis of HIBECs, thus delaying cellular senescence.


Assuntos
Ductos Biliares Intra-Hepáticos/citologia , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal , Interleucina-6/metabolismo , Apoptose , Ductos Biliares Intra-Hepáticos/imunologia , Biomarcadores/análise , Movimento Celular , Células Cultivadas , Senescência Celular , Células Epiteliais/imunologia , Regulação da Expressão Gênica , Humanos
19.
J Gastroenterol Hepatol ; 31(6): 1220-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26574150

RESUMO

BACKGROUND AND AIM: Epithelial-mesenchymal transition (EMT) of biliary epithelial cells (BECs) plays an important role in biliary fibrosis. This study investigated the effects of simvastatin on the lipopolysaccharide (LPS)-induced EMT and related signal pathways in BECs. METHODS: Biliary epithelial cells were exposed to LPS (2 µg/mL) or transforming growth factor ß1 (TGF-ß1) (5 ng/mL) for 5 days. The EMT was assessed by a gain of mesenchymal cell markers (vimentin, N-cadherin, slug, and Twist-1) and a loss of epithelial cell markers (E-cadherin). The effects of simvastatin on the EMT induced by LPS or TGF-ß1 were determined by the changes in the levels of EMT markers and TLR4 and in the c-Jun N-terminal kinase (JNK), p38, and nuclear factor-κB (NF-κB) signaling pathways. RESULTS: Compared with the BECs treated with LPS alone, co-treatment with simvastatin and LPS induced an increase in the expression of E-cadherin and decreases in the expression levels of mesenchymal cell markers. The LPS-induced TLR4 expression level was slightly decreased by co-treatment with simvastatin. LPS-induced BEC growth was markedly inhibited by co-treatment with simvastatin. Furthermore, pretreatment with simvastatin inhibited the LPS-induced EMT in BECs by downregulating NF-κB and JNK phosphorylation. The suppressive effects of simvastatin pretreatment on the induction of the EMT by TGF-ß1 were also demonstrated in H69 cells. CONCLUSIONS: Our results demonstrate that LPS or TGF-ß1 promote the EMT in BECs that that pretreatment with simvastatin inhibited the induced EMT by downregulating toll-like receptor 4 and NF-κB phosphorylation. This finding suggests that simvastatin can be considered a new agent for preventing biliary fibrosis associated with the EMT of BECs.


Assuntos
Ductos Biliares/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lipopolissacarídeos/toxicidade , Cirrose Hepática Biliar/prevenção & controle , NF-kappa B/metabolismo , Sinvastatina/farmacologia , Receptor 4 Toll-Like/metabolismo , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Biomarcadores/metabolismo , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Citoproteção , Regulação para Baixo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Cirrose Hepática Biliar/induzido quimicamente , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/patologia , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Receptor 4 Toll-Like/genética , Fator de Crescimento Transformador beta1/toxicidade
20.
Gastroenterology ; 147(1): 221-232.e7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24726754

RESUMO

BACKGROUND & AIMS: T-cell-mediated biliary injury is a feature of primary sclerosing cholangitis (PSC). We studied the roles of CD28(-) T cells in PSC and their regulation by vitamin D. METHODS: Peripheral and liver-infiltrating mononuclear cells were isolated from blood or fresh liver tissue. We analyzed numbers, phenotypes, functions, and localization patterns of CD28(-) T cells, along with their ability to activate biliary epithelial cells. We measured levels of tumor necrosis factor (TNF)α in liver tissues from patients with PSC and the effects of exposure to active vitamin D (1,25[OH]2D3) on expression of CD28. RESULTS: A significantly greater proportion of CD4(+) and CD8(+) T cells that infiltrated liver tissues of patients with PSC were CD28(-), compared with control liver tissue (CD4(+): 30.3% vs 2.5%, P < .0001; and CD8(+): 68.5% vs 31.9%, P < .05). The mean percentage of CD4(+)CD28(-) T cells in liver tissues from patients with PSC was significantly higher than from patients with primary biliary cirrhosis or nonalcoholic steatohepatitis (P < .05). CD28(-) T cells were activated CD69(+)CD45RA(-) C-C chemokine receptor (CCR)7(-) effector memory and perforin(+) granzyme B(+) cytotoxic cells, which express CD11a, CX3CR1, C-X3-C motif receptor 6 (CXCR6), and CCR10-consistent with their infiltration of liver and localization around bile ducts. Compared with CD28(+) T cells, activated CD28(-) T cells produced significantly higher levels of interferon γ and TNFα (P < .05), and induced up-regulation of intercellular cell adhesion molecule-1, HLA-DR, and CD40 by primary epithelial cells (3.6-fold, 1.5-fold, and 1.2-fold, respectively). Liver tissue from patients with PSC contained high levels of TNFα; TNFα down-regulated the expression of CD28 by T cells in vitro (P < .01); this effect was prevented by administration of 1,25(OH)2D3 (P < .05). CONCLUSIONS: Inflammatory CD28(-) T cells accumulate in livers of patients with PSC and localize around bile ducts. The TNFα-rich microenvironment of this tissue promotes inflammation; these effects are reversed by vitamin D in vitro.


Assuntos
Antígenos CD28/deficiência , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Colangite Esclerosante/etiologia , Fígado/metabolismo , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colangite Esclerosante/metabolismo , Colangite Esclerosante/patologia , Citocinas/metabolismo , Humanos , Técnicas In Vitro , Interferon gama/metabolismo , Fígado/patologia , Fator de Necrose Tumoral alfa/metabolismo , Vitamina D/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA