Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
1.
Mol Cell Proteomics ; 23(5): 100765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608840

RESUMO

Pseudomonas putida KT2440 is an important bioplastic-producing industrial microorganism capable of synthesizing the polymeric carbon-rich storage material, polyhydroxyalkanoate (PHA). PHA is sequestered in discrete PHA granules, or carbonosomes, and accumulates under conditions of stress, for example, low levels of available nitrogen. The pha locus responsible for PHA metabolism encodes both anabolic and catabolic enzymes, a transcription factor, and carbonosome-localized proteins termed phasins. The functions of phasins are incompletely understood but genetic disruption of their function causes PHA-related phenotypes. To improve our understanding of these proteins, we investigated the PHA pathways of P.putida KT2440 using three types of experiments. First, we profiled cells grown in nitrogen-limited and nitrogen-excess media using global expression proteomics, identifying sets of proteins found to coordinately increase or decrease within clustered pathways. Next, we analyzed the protein composition of isolated carbonosomes, identifying two new putative components. We carried out physical interaction screens focused on PHA-related proteins, generating a protein-protein network comprising 434 connected proteins. Finally, we confirmed that the outer membrane protein OprL (the Pal component of the Pal-Tol system) localizes to the carbonosome and shows a PHA-related phenotype and therefore is a novel phasin. The combined datasets represent a valuable overview of the protein components of the PHA system in P.putida highlighting the complex nature of regulatory interactions responsive to nutrient stress.


Assuntos
Lipoproteínas , Poli-Hidroxialcanoatos , Proteômica , Pseudomonas putida , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas putida/metabolismo , Pseudomonas putida/genética , Proteômica/métodos , Lipoproteínas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/metabolismo , Nitrogênio/metabolismo , Lectinas de Plantas
2.
Proc Natl Acad Sci U S A ; 119(23): e2118638119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639688

RESUMO

The conversion of CO2 to value-added products allows both capture and recycling of greenhouse gas emissions. While plants and other photosynthetic organisms play a key role in closing the global carbon cycle, their dependence on light to drive carbon fixation can be limiting for industrial chemical synthesis. Methanogenic archaea provide an alternative platform as an autotrophic microbial species capable of non-photosynthetic CO2 fixation, providing a potential route to engineered microbial fermentation to synthesize chemicals from CO2 without the need for light irradiation. One major challenge in this goal is to connect upstream carbon-fixation pathways with downstream biosynthetic pathways, given the distinct differences in metabolism between archaea and typical heterotrophs. We engineered the model methanogen, Methanococcus maripaludis, to divert acetyl-coenzyme A toward biosynthesis of value-added chemicals, including the bioplastic polyhydroxybutyrate (PHB). A number of studies implicated limitations in the redox pool, with NAD(P)(H) pools in M. maripaludis measured to be <15% of that of Escherichia coli, likely since methanogenic archaea utilize F420 and ferredoxins instead. Multiple engineering strategies were used to precisely target and increase the cofactor pool, including heterologous expression of a synthetic nicotinamide salvage pathway as well as an NAD+-dependent formate dehydrogenase from Candida boidinii. Engineered strains of M. maripaludis with improved NADH pools produced up to 171 ± 4 mg/L PHB and 24.0 ± 1.9% of dry cell weight. The metabolic engineering strategies presented in this study broaden the utility of M. maripaludis for sustainable chemical synthesis using CO2 and may be transferable to related archaeal species.


Assuntos
Archaea , Euryarchaeota , Archaea/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Crescimento Quimioautotrófico , Euryarchaeota/metabolismo
3.
Crit Rev Biotechnol ; 44(2): 236-254, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642423

RESUMO

Nowadays, rapidly increasing production, use and disposable of plastic products has become one of the utmost environmental issues. Our current circumstances in which the food supply chain is demonstrated as containing plastic particles and other plastic-based impurities, represents a significant health risk to humans, animals, and environmental alike. According to this point of view, biodegradable plastic material aims to produce a more sustainable and greener world with a lower ecological impact. Bioplastics are being investigated as an environmentally friendly candidate to address this problem and hence global bioplastic production has seen significant growth and expansion in recent years. This article focuses on a few critical issues that must be addressed for bioplastic production to become commercially viable. Although the reduction of fruit and vegetable waste biomass has an apparent value in terms of environmental benefits and sustainability, commercial success at industrial scale has remained flat. This is due to various factors, including biomass feedstocks, pretreatment technologies, enzymatic hydrolysis, and scale-up issues in the industry, all of which contribute to high capital and operating costs. This review paper summarizes the global overview of bioplastics derived from fruit and vegetable waste biomass. Furthermore, economic and technical challenges associated with industrialization and diverse applications of bioplastics in biomedical, agricultural, and food-packaging fields due to their excellent biocompatibility properties are reviewed.HighlightsReview of the diverse types and characteristics of sustainability of biobased plasticsImproved pretreatment technologies can develop to enhance greater yieldEnzyme hydrolysis process used for bioplastic extraction & hasten industrial scale-upFocus on technical challenges facing commercialized the bioplasticsDetailed discussion on the application for sustainability of biodegradable plastics.


Assuntos
Frutas , Verduras , Animais , Humanos , Plásticos , Biopolímeros
4.
Environ Res ; 244: 117707, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008206

RESUMO

The production and utilization of plastics may prove beneficial, but the environmental impact suggests the opposite. The single-use plastics (SUP) and conventional plastics are harmful to the environment and need prompt disposal. Bioplastics are increasingly being considered as a viable alternative to conventional plastics due to their potential to alleviate environmental concerns such as greenhouse gas emissions and pollution. However, the previous reviews revealed a lack of consistency in the methodologies used in the Life Cycle Assessments (LCAs), making it difficult to compare the results across studies. The current study provides a systematic review of LCAs that assess the environmental impact of bioplastics. The different mechanical characteristics of bio plastics, like tensile strength, Young's modulus, flexural modulus, and elongation at break are reviewed which suggest that bio plastics are comparatively much better than synthetic plastics. Bioplastics have more efficient mechanical properties compared to synthetic plastics which signifies that bioplastics are more sustainable and reliable than synthetic plastics. The key challenges in bioplastic adoption and production include competition with food production for feedstock, high production costs, uncertainty in end-of-life management, limited biodegradability, lack of standardization, and technical performance limitations. Addressing these challenges requires collaboration among stakeholders to drive innovation, reduce costs, improve end-of-life management, and promote awareness and education. Overall, the study suggests that while bioplastics have the potential to reduce environmental impact, further research is needed to better understand their life cycle and optimize their end-of-life (EoL) management and production to maximize their environmental benefits.


Assuntos
Poluição Ambiental , Plásticos , Biopolímeros
5.
Biodegradation ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985381

RESUMO

Conventional petroleum-derived polymers are valued for their versatility and are widely used, owing to their characteristics such as cost-effectiveness, diverse physical and chemical qualities, lower molecular weight, and easy processability for large-scale production. However, the extensive accumulation of such plastics leads to serious environmental issues. To combat this existing situation, an alternative lies in the production of bioplastics from natural and renewable sources such as plants, animals, microbes, etc. Bioplastics obtained from renewable sources are compostable and susceptible to degradation caused by microbes hydrolyzing to CO2, CH4, and biomass. Also, certain additives are reinforced into the bioplastic films to improve their physicochemical properties and degradation rate. However, on degradation, the bio-microplastic (BM) produced could have positive as well as negative impact on the soil health. This article thus focuses on the degradation of various fossil based as well as bio based biodegradable plastics such as polyhydroxyalkanoates (PHA), polyhydroxy butyrate (PHB), polylactic acid (PLA), polybutylene succinate (PBS), polycaprolactone (PCL), and polysaccharide derived bioplastics by mechanical, thermal, photodegradation and microbial approaches. The degradation mechanism of each approach has been discussed in detailed for different bioplastics. How the incorporation or reinforcement of various additives in the biodegradable plastics effects their degradation rates has also been discussed. In addition to that, the impact of generated bio-microplastic on physicochemical properties of soil such as pH, bulk density, carbon, nitrogen content etc. and biological properties such as on genome of native soil microbes and on plant nutritional health have been discussed in detailed.

6.
Ecotoxicol Environ Saf ; 271: 115942, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218104

RESUMO

The global production and consumption of plastics, as well as their deposition in the environment, are experiencing exponential growth. In addition, mismanaged plastic waste (PW) losses into drainage channels are a growing source of microplastic (MP) pollution concern. However, the complete understanding of their environmental implications throughout their life cycle is yet to be fully understood. Determining the potential extent to which MPs contribute to overall ecotoxicity is possible through the monitoring of PW release and MP removal during remediation. Life cycle assessments (LCAs) have been extensively utilized in many comparative analyses, such as comparing petroleum-based plastics with biomass and single-use plastics with multi-use alternatives. These assessments typically yield unexpected or paradoxical results. Nevertheless, there is still a paucity of reliable data and tools for conducting LCAs on plastics. On the other hand, the release and impact of MP have so far not been considered in LCA studies. This is due to the absence of inventory-related data regarding MP releases and the characterization factors necessary to quantify the effects of MP. Therefore, this review paper conducts a comprehensive literature review in order to assess the current state of knowledge and data regarding the environmental impacts that occur throughout the life cycle of plastics, along with strategies for plastic management through LCA.


Assuntos
Gerenciamento de Resíduos , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Lacunas de Evidências , Poluição Ambiental , Microplásticos , Estágios do Ciclo de Vida , Monitoramento Ambiental , Ecossistema , Poluentes Químicos da Água/análise
7.
Mikrochim Acta ; 191(8): 492, 2024 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066907

RESUMO

The development and application of an electrochemical sensor is reported for detection of poly(3-hydroxybutyrate) (P3HB) - a bioplastic derived from agro-industrial residues. To overcome the challenges of molecular imprinting of macromolecules such as P3HB, this study employed methanolysis reaction to break down the P3HB biopolymer chains into methyl 3-hydroxybutyrate (M3HB) monomers. Thereafter, M3HB were employed as the target molecules in the construction of molecularly imprinted sensors. The electrochemical device was then prepared by electropolymerizing a molecularly imprinted poly (indole-3-acetic acid) thin film on a glassy carbon electrode surface modified with reduced graphene oxide (GCE/rGO-MIP) in the presence of M3HB. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy with field emission gun (SEM-FEG), Raman spectroscopy, attenuated total reflection Fourier-transform infrared (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the electrode surface. Under ideal conditions, the MIP sensor exhibited a wide linear working range of 0.1 - 10 nM and a detection limit of 0.3 pM (n = 3). The sensor showed good repeatability, selectivity, and stability over time. For the sensor application, the bioproduction of P3HB was carried out in a bioreactor containing the Burkholderia glumae MA13 strain and sugarcane byproducts as a supplementary carbon source. The analyses were validated through recovery assays, yielding recovery values between 102 and 104%. These results indicate that this MIP sensor can present advantages in the monitoring of P3HB during the bioconversion process.


Assuntos
Burkholderia , Técnicas Eletroquímicas , Eletrodos , Grafite , Hidroxibutiratos , Polímeros Molecularmente Impressos , Poliésteres , Grafite/química , Poliésteres/química , Hidroxibutiratos/química , Burkholderia/química , Burkholderia/metabolismo , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Polímeros Molecularmente Impressos/química , Limite de Detecção , Oxirredução , Poli-Hidroxibutiratos
8.
Bioprocess Biosyst Eng ; 47(1): 119-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006410

RESUMO

Inulin is a fructose-based polysaccharide that can be found in several plant species, from grass and onions to chicory roots; thus, it has the potential to be an excellent renewable source of fructose for several industrial applications. Among them, inulin hydrolysis can be coupled to a fermentation operation to produce polyhydroxybutyrate (PHB) using Cupriavidus necator H16. This work reports the PHB production process involving chicory root inulin hydrolysis using inulinase Novozym 960 followed by a C. necator fermentation. It was found that the maximum saccharification (95% wt.) was reached at 269 U/ginulin after 90 min. The hydrolysates obtained were then inoculated with C. necator, leading to a biomass concentration of 4 g/L with 30% (w/w) polymer accumulation. Although PHB production was low, during the first hours, the cell growth and polymer accumulation detected did not coincide with a fructose concentration decrease, suggesting a simultaneous saccharification and fermentation process, potentially alleviating the product inhibition inherent to the inulinase-fructose system. The characterization of the obtained PHB showed a polymer with more homogeneous values of Mw, and better thermal stability than PHB produced using pure fructose as a fermentation substrate. The results obtained demonstrate a viable alternative carbon substrate for PHB production, opening the possibility for inulin-rich renewable feedstock valorization.


Assuntos
Cupriavidus necator , Inulina , Fermentação , Inulina/metabolismo , Poli-Hidroxibutiratos , Frutose , Hidroxibutiratos
9.
Waste Manag Res ; : 734242X241241606, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576323

RESUMO

In the recent years, packaging made of conventional plastics has been increasingly replaced by materials believed to be more sustainable. However, perceived sustainability must align with scientific assessments, such as life cycle assessments (LCAs). This review analysed 53 peer-reviewed studies published in the time range 2019-2023, aiming at understanding the state of the art in LCA about the environmental impacts of packaging by focusing on the comparison between plastics and alternative materials. The literature showed that consumer perceptions often differ from LCA findings and revealed that, frequently, conventional plastics are not the least environmentally friendly choice. Bioplastics typically show benefits only in the climate change and the fossil resource depletion impact categories. The heavy weight of glass turns out to affect its environmental performances with respect to the light plastics, with reuse being an essential strategy to lower the burdens. The comparison between plastics and metals is more balanced, leaning more towards plastics for food packaging. Similarly, paper resulted often preferable than plastics. Finally, for the other materials (i.e. wood and textiles), the picture is variable. To be competitive with plastics, the alternative materials require improvements like the optimisation of their production processes, their reuse and enhanced end-of-life options. At the same time, recycled polymers could boost the eco-performance of virgin plastics.

10.
Waste Manag Res ; : 734242X241231408, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449106

RESUMO

Biodegradable plastics, either fossil- or biobased, are often promoted due to their biodegradability and acclaimed environmental friendliness. However, as demonstrated by previous literature, considerable confusion exists about the appropriate source separation and waste management of these plastics. Present study investigated this confusion based on manual sorting analyses of waste sampled from packaging waste (P), biowaste (B) and residual waste (R) in an urban area of Austria. The results were evaluated relative to near-infrared sensor-based sorting trials conducted in a German urban area. Although existing literature has focused on waste composition analyses (mostly in stand-alone studies) of the three waste streams, the present study focused on identifying the specific types of biodegradable plastic items found in each of these streams. Supermarket carrier bags (P = 90, B = 14, R = 33) and dustbin bags (P = 2, B = 46, R = 6) were found in all three waste streams in the Austrian urban area. Similarly, in the German urban area dustbin bags (P = 1, B = 106, R = 3) were the common items. The results indicate that certain bioplastic items were present in more than one bin; thus, hinting that consumers are not necessarily aware of how-to source-separate the biodegradable plastics. This suggests that neither consumers nor current waste management systems are fully 'adapted' to bioplastics, and the management of these plastics' waste is currently not optimal.

11.
Angew Chem Int Ed Engl ; 63(8): e202313945, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-37830521

RESUMO

Lignin, a complex and abundant biopolymer derived from plant cell walls, has emerged as a promising feedstock for sustainable material development. Due to the high abundance of phenylpropanoid units, aromatic rings, and hydroxyl groups, lignin is an ideal candidate for being explored in various material applications. Therefore, the demand on lignin valorization for development of value-added products is significantly increasing. This mini-review provides an overview of lignin upconversion, focusing on its functionalization through chemical and enzymatic routes, and its application in lignin-based polymer resins, hydrogels, and nanomaterials. The functionalization of lignin molecules with various chemical groups offers tailored properties and increased compatibility with other materials, expanding its potential applications. Additionally, the formation of lignin-based networks, either through cross-linking or blending with polymers, generates novel materials with improved mechanical, thermal, and barrier properties. However, challenges remain in optimizing functionalization techniques, preserving the innate complexity of lignin, and achieving scalability for industrial implementation. As lignin's potential continues to be unlocked, it is poised to contribute significantly to the shift towards more eco-friendly and resource-efficient industries.

12.
Appl Environ Microbiol ; 89(12): e0165123, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054734

RESUMO

IMPORTANCE: Cellulose diacetate (CDA) is a promising alternative to conventional plastics due to its versatility in manufacturing and low environmental persistence. Previously, our group demonstrated that CDA is susceptible to biodegradation in the ocean on timescales of months. In this study, we report the composition of microorganisms driving CDA degradation in the coastal ocean. We found that the coastal ocean harbors distinct bacterial taxa implicated in CDA degradation and these taxa have not been previously identified in prior CDA degradation studies, indicating an unexplored diversity of CDA-degrading bacteria in the ocean. Moreover, the shape of the plastic article (e.g., a fabric, film, or foam) and plasticizer in the plastic matrix selected for different microbial communities. Our findings pave the way for future studies to identify the specific species and enzymes that drive CDA degradation in the marine environment, ultimately yielding a more predictive understanding of CDA biodegradation across space and time.


Assuntos
Microbiota , Plásticos , Biopolímeros , Bactérias/genética , Biodegradação Ambiental , Oceanos e Mares
13.
Crit Rev Microbiol ; 49(5): 543-555, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35687715

RESUMO

The genus Aeromonas comprises Gram-negative bacilli widely distributed in aquatic habitats that can also be found in the terrestrial environment and in close association with humans and animals. Aeromonas spp. are particularly versatile bacteria, with high genomic plasticity and notable capacity to adapt to different environments and extreme conditions. On account of being mostly associated with their pathogenic potential, research on the biotechnological potentialities of Aeromonas spp. is considerably scarce when compared to other bacterial groups. Nonetheless, studies over the years have been hinting at several interesting hidden potentialities in this bacterial group, especially with the recent advances in whole-genome sequencing, unveiling Aeromonas spp. as interesting candidates for the discovery of novel industrial biocatalysts, bioremediation strategies, and biopolyester production. In this context, the present study aims to provide an overview of the main biotechnological applications reported in the genus Aeromonas and provide new insights into the further exploration of these frequently overlooked, yet fascinating, bacteria.


Assuntos
Aeromonas , Humanos , Animais , Aeromonas/genética , Biotecnologia
14.
Crit Rev Biotechnol ; : 1-15, 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36842973

RESUMO

Nanotechnology is a multifaceted technical and scientific field undergoing a fast expansion. Nanoparticles, quantum dots, nanotubes, nanorods, nanowires, nanochips and many more are being increasingly used for fabrication of nanosensors and nanobiosensors to increase the sensitivity and selectivity of reactions. Food safety is an extremely important concern in food industries since it is directly associated with effect of food on human health. Here in our review, we have not only described the newest information regarding methods and use of nanomaterials for construction of nanosensors but also their detection range, limit of detection (LOD) and applications for food safety. Precise nanosensors having improved sensitivity and low limit of detection were discussed in brief. Review is primarily focused on nanosensors employed for detection of adulterants and contaminants in food products such as meat products, milk, fruit juices and water samples.

15.
Chemistry ; 29(1): e202202222, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36173968

RESUMO

Bioplastics are one of the answers to environmental pollution and linear material flows. The most promising bioplastic polylactide (PLA) is already replacing conventional plastics in a number of applications. The properties of PLA, however, do not fit for all potential application areas, but they can be altered by the introduction of comonomers. The copolymerization of lactide (LA) with other lactones like ϵ-caprolactone (CL) has been established for several years. Nevertheless, controlling copolymerizations remains a challenge due to the high complexity of the system. Copolymerization of LA with other monomer classes is much less investigated, but has the chance to overcome the limitations in material properties that occur when only lactones are used. The crucial factor for all copolymerizations is the catalyst. It dominates the reaction kinetics and determines the resulting microstructure. In this review, copolymerization catalysts for LA are presented divided into catalysts for the synthesis of lactone block copolymers, lactone random copolymers, and multimechanistically synthesized copolymers. The selected catalysts are highlighted either owing to their industrially applicable polymerization conditions or their non-standard mechanism.


Assuntos
Poliésteres , Polímeros , Poliésteres/química , Polímeros/química , Lactonas/química , Biopolímeros , Plásticos
16.
Biopolymers ; 114(9): e23560, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37435944

RESUMO

Bioplastics were developed to overcome environmental problems that are difficult to decompose in the environment. This study analyzes Thai cassava starch-based bioplastics' tensile strength, biodegradability, moisture absorption, and thermal stability. This study used Thai cassava starch and polyvinyl alcohol (PVA) as matrices, whereas Kepok banana bunch cellulose was employed as a filler. The ratios between starch and cellulose are 10:0 (S1), 9:1 (S2), 8:2 (S3), 7:3 (S4), and 6:4 (S5), while PVA was set constant. The tensile test showed the S4 sample's highest tensile strength of 6.26 MPa, a strain of 3.85%, and a modulus of elasticity of 166 MPa. After 15 days, the maximum soil degradation rate in the S1 sample was 27.9%. The lowest moisture absorption was found in the S5 sample at 8.43%. The highest thermal stability was observed in S4 (316.8°C). This result was significant in reducing the production of plastic waste for environmental remediation.


Assuntos
Manihot , Musa , Celulose , Manihot/metabolismo , Musa/metabolismo , Álcool de Polivinil , Amido/metabolismo , Resistência à Tração
17.
Extremophiles ; 27(3): 25, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709928

RESUMO

In recent years, extremophilic microorganisms have been employed as producers of the microbial bioplastics polyhydroxyalkanoates (PHA), which are of great biotechnological value. Nevertheless, cold-loving or psychrophilic (cryophilic) bacteria have been neglected in this regard. Here, we present an investigation of the Arctic glacier-derived PHA producer Acidovorax sp. A1169. Biolog GEN III Microplates were used as a screening tool to identify the most suitable carbon substrate concerning PHA synthesis. The strain produced homopolymer poly(3-hydroxybutyrate) (PHB) most efficiently (2 g/L) at a temperature of 15 °C when supplied with fructose or mannitol as carbon sources with a substantial decrease of PHB biosynthesis at 17.5 °C. The PHB yield did not increase considerably or even decreased when carbon source concentration exceeded 10 g/L hinting that the strain is oligotrophic in nature. The strain was also capable of introducing 3-hydroxyvalerate (3HV) into the polymer structure, which is known to improve PHA thermoplastic properties. This is the first investigation providing insight into a PHA biosynthesis process by means of a true psychrophile, offering guidelines on polar-region bacteria cultivation, production of PHA and also on the methodology for genetic engineering of psychrophiles.


Assuntos
Comamonadaceae , Poli-Hidroxialcanoatos , Temperatura , Engenharia Genética , Carbono , Comamonadaceae/genética
18.
Microb Cell Fact ; 22(1): 184, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715205

RESUMO

BACKGROUND: Bioplastics are attracting considerable attention, owing to the increase in non-degradable waste. Using microorganisms to degrade bioplastics is a promising strategy for reducing non-degradable plastic waste. However, maintaining bacterial viability and activity during culture and storage remains challenging. With the use of conventional methods, cell viability and activity was lost; therefore, these conditions need to be optimized for the practical application of microorganisms in bioplastic degradation. Therefore, we aimed to optimize the feasibility of the lyophilization method for convenient storage and direct use. In addition, we incoporated protective reagents to increase the viability and activity of lyophilized microorganisms. By selecting and applying the best protective reagents for the lyophilization process and the effects of additives on the growth and PHB-degrading activity of strains were analyzed after lyophilization. For developing the lyophilization method for protecting degradation activity, it may promote practical applications of bioplastic-degrading bacteria. RESULTS: In this study, the polyhydroxybutyrate (PHB)-degrading strain, Bacillus sp. JY14 was lyophilized with the use of various sugars as protective reagents. Among the carbon sources tested, raffinose was associated with the highest cell survival rate (12.1%). Moreover, 7% of raffionose showed the highest PHB degradation yield (92.1%). Therefore, raffinose was selected as the most effective protective reagent. Also, bacterial activity was successfully maintained, with raffinose, under different storage temperatures and period. CONCLUSIONS: This study highlights lyophilization as an efficient microorganism storage method to enhance the applicability of bioplastic-degrading bacterial strains. The approach developed herein can be further studied and used to promote the application of microorganisms in bioplastic degradation.


Assuntos
Bacillus , Rafinose , Carbono , Liofilização
19.
Environ Res ; 236(Pt 2): 116775, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517491

RESUMO

Bioplastics arise as an alternative to plastic production delinked from fossil resources. However, as their demand is increasing, there is a need to investigate their environmental fingerprint. Here we study the toxicity of microplastics (MPLs) of two widely used materials, the polylactic acid (PLA) and the polyhydroxybutyrate (PHB) on the environmental aquatic model species Daphnia magna. The study was focused on sublethal behavioural and feeding endpoints linked to antipredator scape responses and food intake. The study aimed to test that MPLs from single-use household comercial items and among them bioplastics should be more toxic than those obtained from standard plastic polymers and fossil plastic materials due to the greater amount of plastic additives, and that MPLs should be more toxic than plastic extracts due to the contribution of both particle and plastic additive toxicity. MPLs were obtained by cryogenic grinding and sea-sand erosion to obtain irregular particles. MPL included standard polymers and nine comercial items of PLA and PHB and one fossil-based material of high-density polyethylene (HDPE). The additive content in commercial items was characterised by liquid chromatography coupled with high-resolution mass spectrometry. D. magna juveniles were exposed for 24 h to particles and their plastic extracts. Results indicated that the toxicity of bioplastic particles was five times higher than the effects produced by exposure to the content of the additives alone, that bioplastic particles were more toxic than fossil ones and that particles obtained from commercial items were more toxic than those obtained from PLA, PHB or HDPE polymer standards. Predicted toxicity from the measured plastic additives in the studied commercially available household items, however, was poorly related with the observed behavioural and feeding effects. Further research on unknown chemical components together with physical factors is need it to fully understand the mechanisms of toxicity of bioplastic materials.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Plásticos/análise , Daphnia , Polietileno/farmacologia , Poliésteres/toxicidade , Biopolímeros/farmacologia , Poluentes Químicos da Água/análise
20.
Environ Res ; 231(Pt 2): 116227, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244494

RESUMO

Microplastics (MP) and nanoplastics (NP) contamination of the terrestrial environment is a growing concern worldwide and is thought to impact soil biota, particularly the micro and mesofauna community, by various processes that may contribute to global change in terrestrial systems. Soils act as a long-term sink for MP, accumulating these contaminants and increasing their adverse impacts on soil ecosystems. Consequently, the whole terrestrial ecosystem is impacted by microplastic pollution, which also threatens human health by their potential transfer to the soil food web. In general, the ingestion of MP in different concentrations by soil micro and mesofauna can adversely affect their development and reproduction, impacting terrestrial ecosystems. MP in soil moves horizontally and vertically because of the movement of soil organisms and the disturbance caused by plants. However, the effects of MP on terrestrial micro-and mesofauna are largely overlooked. Here, we give the most recent information on the forgotten impacts of MP contamination of soil on microfauna and mesofauna communities (protists, tardigrades, soil rotifers, nematodes, collembola and mites). More than 50 studies focused on the impact of MP on these organisms between 1990 and 2022 have been reviewed. In general, plastic pollution does not directly affect the survival of organisms, except under co-contaminated plastics that can increase adverse effects (e.g. tire-tread particles on springtails). Besides, they can have adverse effects at oxidative stress and reduced reproduction (protists, nematodes, potworms, springtails or mites). It was observed that micro and mesofauna could act as passive plastic transporters, as shown for springtails or mites. Finally, this review discusses how soil micro- and mesofauna play a key role in facilitating the (bio-)degradation and movement of MP and NP through soil systems and, therefore, the potential transfer to soil depths. More research should be focused on plastic mixtures, community level and long-term experiments.


Assuntos
Ecossistema , Plásticos , Humanos , Plásticos/toxicidade , Solo , Microplásticos , Cadeia Alimentar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA