Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
J Biol Chem ; 300(4): 107119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428819

RESUMO

Synaptic transmission from retinal photoreceptors to downstream ON-type bipolar cells (BCs) depends on the postsynaptic metabotropic glutamate receptor mGluR6, located at the BC dendritic tips. Glutamate binding to mGluR6 initiates G-protein signaling that ultimately leads to BC depolarization in response to light. The mGluR6 receptor also engages in trans-synaptic interactions with presynaptic ELFN adhesion proteins. The roles of post-translational modifications in mGluR6 trafficking and function are unknown. Treatment with glycosidase enzymes PNGase F and Endo H demonstrated that both endogenous and heterologously expressed mGluR6 contain complex N-glycosylation acquired in the Golgi. Pull-down experiments with ELFN1 and ELFN2 extracellular domains revealed that these proteins interact exclusively with the complex glycosylated form of mGluR6. Mutation of the four predicted N-glycosylation sites, either singly or in combination, revealed that all four sites are glycosylated. Single mutations partially reduced, but did not abolish, surface expression in heterologous cells, while triple mutants had little or no surface expression, indicating that no single glycosylation site is necessary or sufficient for plasma membrane trafficking. Mutation at N445 severely impaired both ELFN1 and ELFN2 binding. All single mutants exhibited dendritic tip enrichment in rod BCs, as did the triple mutant with N445 as the sole N-glycosylation site, demonstrating that glycosylation at N445 is sufficient but not necessary for dendritic tip localization. The quadruple mutant was completely mislocalized. These results reveal a key role for complex N-glycosylation in regulating mGluR6 trafficking and ELFN binding, and by extension, function of the photoreceptor synapses.


Assuntos
Receptores de Glutamato Metabotrópico , Animais , Humanos , Camundongos , Glicosilação , Células HEK293 , Processamento de Proteína Pós-Traducional , Transporte Proteico , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Células Bipolares da Retina/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
2.
J Neurosci ; 43(24): 4379-4389, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37208176

RESUMO

The sensitivity of retinal cells is altered in background light to optimize the detection of contrast. For scotopic (rod) vision, substantial adaptation occurs in the first two cells, the rods and rod bipolar cells (RBCs), through sensitivity adjustments in rods and postsynaptic modulation of the transduction cascade in RBCs. To study the mechanisms mediating these components of adaptation, we made whole-cell, voltage-clamp recordings from retinal slices of mice from both sexes. Adaptation was assessed by fitting the Hill equation to response-intensity relationships with the parameters of half-maximal response (I1/2 ), Hill coefficient (n), and maximum response amplitude (Rmax ). We show that rod sensitivity decreases in backgrounds according to the Weber-Fechner relation with an I1/2 of ∼50 R* s-1 The sensitivity of RBCs follows a near-identical function, indicating that changes in RBC sensitivity in backgrounds bright enough to adapt the rods are mostly derived from the rods themselves. Backgrounds too dim to adapt the rods can however alter n, relieving a synaptic nonlinearity likely through entry of Ca2+ into the RBCs. There is also a surprising decrease of Rmax , indicating that a step in RBC synaptic transduction is desensitized or that the transduction channels became reluctant to open. This effect is greatly reduced after dialysis of BAPTA at a membrane potential of +50 mV to impede Ca2+ entry. Thus the effects of background illumination in RBCs are in part the result of processes intrinsic to the photoreceptors and in part derive from additional Ca2+-dependent processes at the first synapse of vision.SIGNIFICANCE STATEMENT Light adaptation adjusts the sensitivity of vision as ambient illumination changes. Adaptation for scotopic (rod) vision is known to occur partly in the rods and partly in the rest of the retina from presynaptic and postsynaptic mechanisms. We recorded light responses of rods and rod bipolar cells to identify different components of adaptation and study their mechanisms. We show that bipolar-cell sensitivity largely follows adaptation of the rods but that light too dim to adapt the rods produces a linearization of the bipolar-cell response and a surprising decrease in maximum response amplitude, both mediated by a change in intracellular Ca2+ These findings provide a new understanding of how the retina responds to changing illumination.


Assuntos
Retina , Células Fotorreceptoras Retinianas Bastonetes , Camundongos , Animais , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Retina/fisiologia , Adaptação Ocular , Células Bipolares da Retina , Sinapses/fisiologia , Luz
3.
Development ; 148(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738615

RESUMO

The development of the first synapse of the visual system between photoreceptors and bipolar cells in the outer plexiform layer (OPL) of the human retina is crucial for visual processing but poorly understood. By studying the maturation state and spatial organization of photoreceptors, depolarizing bipolar cells and horizontal cells in the human fetal retina, we establish a pseudo-temporal staging system for OPL development that we term OPL-Stages 0 to 4. This was validated through quantification of increasingly precise subcellular localization of bassoon to the OPL with each stage (P<0.0001). By applying these OPL staging criteria to human retinal organoids (HROs) derived from human embryonic and induced pluripotent stem cells, we observed comparable maturation from OPL-Stage 0 at day 100 in culture up to OPL-Stage 3 by day 160. Quantification of presynaptic protein localization confirmed progression from OPL-Stage 0 to 3 (P<0.0001). Overall, this study defines stages of human OPL development through mid-gestation and establishes HROs as a model system that recapitulates key aspects of human photoreceptor-bipolar cell synaptogenesis in vitro.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo , Retina/metabolismo , Linhagem Celular , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/citologia , Retina/citologia
4.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34702737

RESUMO

Neurons in the central nervous system (CNS) are distinguished by the neurotransmitter types they release, their synaptic connections, morphology, and genetic profiles. To fully understand how the CNS works, it is critical to identify all neuronal classes and reveal their synaptic connections. The retina has been extensively used to study neuronal development and circuit formation. Here, we describe a previously unidentified interneuron in mammalian retina. This interneuron shares some morphological, physiological, and molecular features with retinal bipolar cells, such as receiving input from photoreceptors and relaying visual signals to retinal ganglion cells. It also shares some features with amacrine cells (ACs), particularly Aii-ACs, such as their neurite morphology in the inner plexiform layer, the expression of some AC-specific markers, and possibly the release of the inhibitory neurotransmitter glycine. Thus, we unveil an uncommon interneuron, which may play an atypical role in vision.


Assuntos
Interneurônios/citologia , Retina/citologia , Visão Ocular/fisiologia , Animais , Evolução Biológica , Callithrix , Interneurônios/fisiologia , Macaca , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Retina/fisiologia , Coloração e Rotulagem/métodos
5.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732096

RESUMO

Alterations in intraocular and external pressure critically involve the pathogenesis of glaucoma, traumatic retinal injury (TRI), and other retinal disorders, and retinal neurons have been reported to express multiple mechanical-sensitive channels (MSCs) in recent decades. However, the role of MSCs in visual functions and pressure-related retinal conditions has been unclear. This review will focus on the variety and functional significance of the MSCs permeable to K+, Na+, and Ca2+, primarily including the big potassium channel (BK); the two-pore domain potassium channels TRAAK and TREK; Piezo; the epithelial sodium channel (ENaC); and the transient receptor potential channels vanilloid TRPV1, TRPV2, and TRPV4 in retinal photoreceptors, bipolar cells, horizontal cells, amacrine cells, and ganglion cells. Most MSCs do not directly mediate visual signals in vertebrate retinas. On the other hand, some studies have shown that MSCs can open in physiological conditions and regulate the activities of retinal neurons. While these data reasonably predict the crossing of visual and mechanical signals, how retinal light pathways deal with endogenous and exogenous mechanical stimulation is uncertain.


Assuntos
Canais Iônicos , Neurônios Retinianos , Humanos , Animais , Canais Iônicos/metabolismo , Neurônios Retinianos/metabolismo , Mecanotransdução Celular , Retina/metabolismo , Retina/citologia
6.
J Neurosci ; 42(34): 6487-6505, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35896423

RESUMO

Retinal bipolar cells (BCs) compose the canonical vertical excitatory pathway that conveys photoreceptor output to inner retinal neurons. Although synaptic transmission from BC terminals is thought to rely almost exclusively on Ca2+ influx through voltage-gated Ca2+ (CaV) channels mediating L-type currents, the molecular identity of CaV channels in BCs is uncertain. Therefore, we combined molecular and functional analyses to determine the expression profiles of CaV α1, ß, and α2δ subunits in mouse rod bipolar (RB) cells, BCs from which the dynamics of synaptic transmission are relatively well-characterized. We found significant heterogeneity in CaV subunit expression within the RB population from mice of either sex, and significantly, we discovered that transmission from RB synapses was mediated by Ca2+ influx through P/Q-type (CaV2.1) and N-type (CaV2.2) conductances as well as the previously-described L-type (CaV1) and T-type (CaV3) conductances. Furthermore, we found both CaV1.3 and CaV1.4 proteins located near presynaptic ribbon-type active zones in RB axon terminals, indicating that the L-type conductance is mediated by multiple CaV1 subtypes. Similarly, CaV3 α1, ß, and α2δ subunits also appear to obey a "multisubtype" rule, i.e., we observed a combination of multiple subtypes, rather than a single subtype as previously thought, for each CaV subunit in individual cells.SIGNIFICANCE STATEMENT Bipolar cells (BCs) transmit photoreceptor output to inner retinal neurons. Although synaptic transmission from BC terminals is thought to rely almost exclusively on Ca2+ influx through L-type voltage-gated Ca2+ (CaV) channels, the molecular identity of CaV channels in BCs is uncertain. Here, we report unexpectedly high molecular diversity of CaV subunits in BCs. Transmission from rod bipolar (RB) cell synapses can be mediated by Ca2+ influx through P/Q-type (CaV2.1) and N-type (CaV2.2) conductances as well as the previously-described L-type (CaV1) and T-type (CaV3) conductances. Furthermore, CaV1, CaV3, ß, and α2δ subunits appear to obey a "multisubtype" rule, i.e., a combination of multiple subtypes for each subunit in individual cells, rather than a single subtype as previously thought.


Assuntos
Canais de Cálcio Tipo L , Sinapses , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Camundongos , Terminações Pré-Sinápticas/metabolismo , Retina/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
7.
Dev Biol ; 481: 30-42, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534525

RESUMO

The bipolar interneurons of the mammalian retina have evolved as a diverse set of cells with distinct subtype characteristics, which reflect specialized contributions to visual circuitry. Fifteen subtypes of bipolar interneurons have been identified in the mouse retina, each with characteristic gene expression, morphology, and light responses. This review provides an overview of the developmental events that underlie the generation of the diverse bipolar cell class, summarizing the current knowledge of genetic programs that establish and maintain bipolar subtype fates, as well as the events that shape the final distribution of bipolar subtypes. With much left to be discovered, bipolar interneurons present an ideal model system for studying the interplay between cell-autonomous and non-cell-autonomous mechanisms that influence neuronal subtype development within the central nervous system.


Assuntos
Diferenciação Celular , Sistema Nervoso Central/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese , Retina/embriologia , Células Bipolares da Retina/metabolismo , Animais , Camundongos
8.
J Anat ; 243(2): 204-222, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292986

RESUMO

The precise specification of cellular fate is thought to ensure the production of the correct number of neurons within a population. Programmed cell death may be an additional mechanism controlling cell number, believed to refine the proper ratio of pre- to post-synaptic neurons for a given species. Here, we consider the size of three different neuronal populations in the rod pathway of the mouse retina: rod photoreceptors, rod bipolar cells, and AII amacrine cells. Across a collection of 28 different strains of mice, large variation in the numbers of all three cell types is present. The variation in their numbers is not correlated, so that the ratio of rods to rod bipolar cells, as well as rod bipolar cells to AII amacrine cells, varies as well. Establishing connectivity between such variable pre- and post-synaptic populations relies upon plasticity that modulates process outgrowth and morphological differentiation, which we explore experimentally for both rod bipolar and AII amacrine cells in a mouse retina with elevated numbers of each cell type. While both rod bipolar dendritic and axonal arbors, along with AII lobular arbors, modulate their areal size in relation to local homotypic cell densities, the dendritic appendages of the AII amacrine cells do not. Rather, these processes exhibit a different form of plasticity, regulating the branching density of their overlapping arbors. Each form of plasticity should ensure uniformity in retinal coverage in the presence of the independent specification of afferent and target cell number.


Assuntos
Dendritos , Retina , Camundongos , Animais , Dendritos/fisiologia , Células Amácrinas/fisiologia , Axônios
9.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175812

RESUMO

Mammalian UNC119 is a ciliary trafficking chaperone highly expressed in the inner segment of retinal photoreceptors. Previous research has shown that UNC119 can bind to transducin, the synaptic ribbon protein RIBEYE, and the calcium-binding protein CaBP4, suggesting that UNC119 may have a role in synaptic transmission. We made patch-clamp recordings from retinal slices in mice with the UNC119 gene deleted and showed that removal of even one gene of UNC119 has no effect on the rod outer segment photocurrent, but acted on bipolar cells much like background light: it depolarized membrane potential, decreased sensitivity, accelerated response decay, and decreased the Hill coefficient of the response-intensity relationship. Similar effects were seen on rod bipolar-cell current and voltage responses, and after exposure to bright light to translocate transducin into the rod inner segment. These findings indicate that UNC119 deletion reduces the steady-state glutamate release rate at rod synapses, though no change in the voltage dependence of the synaptic Ca current was detected. We conclude that UNC119, either by itself or together with transducin, can facilitate the release of glutamate at rod synapses, probably by some interaction with RIBEYE or other synaptic proteins rather than by binding to CaBP4 or calcium channels.


Assuntos
Transmissão Sináptica , Transducina , Animais , Camundongos , Glutamatos/metabolismo , Mamíferos/metabolismo , Retina/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Transducina/metabolismo
10.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069250

RESUMO

Thinning of the sclera happens in myopia eyes owing to extracellular matrix (ECM) remodeling, but the initiators of the ECM remodeling in myopia are mainly unknown. The matrix metalloproteinase (MMPs) and tissue inhibitors of matrix metalloproteinase (TIMPs) regulate the homeostasis of the ECM. However, genetic studies of the MMPs and TIMPs in the occurrence of myopia are poor and limited. This study systematically investigated the association between twenty-nine genes of the TIMPs and MMPs families and early-onset high myopia (eoHM) based on whole exome sequencing data. Two TIMP4 heterozygous loss-of-function (LoF) variants, c.528C>A in six patients and c.234_235insAA in one patient, were statistically enriched in 928 eoHM probands compared to that in 5469 non-high myopia control (p = 3.7 × 10-5) and that in the general population (p = 2.78 × 10-9). Consequently, the Timp4 gene editing rat was further evaluated to explore the possible role of Timp4 on ocular and myopia development. A series of ocular morphology abnormalities in a dose-dependent manner (Timp4-/- < Timp4+/- < Timp4+/+) were observed in a rat model, including the decline in the retinal thickness, the elongation in the axial length, more vulnerable to the form deprivation model, morphology changes in sclera collagen bundles, and the decrease in collagen contents of the sclera and retina. Electroretinogram revealed that the b-wave amplitudes of Timp4 defect rats were significantly reduced, consistent with the shorter length of the bipolar axons detected by HE and IF staining. Heterozygous LoF variants in the TIMP4 are associated with early onset high myopia, and the Timp4 defect disturbs ocular development by influencing the morphology and function of the ocular tissue.


Assuntos
Miopia , Animais , Humanos , Ratos , Colágeno/genética , Metaloproteinases da Matriz , Miopia/genética , Esclera
11.
J Neurosci ; 41(23): 5015-5028, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33893221

RESUMO

Double cones are the most common photoreceptor cell type in most avian retinas, but their precise functions remain a mystery. Among their suggested functions are luminance detection, polarized light detection, and light-dependent, radical pair-based magnetoreception. To better understand the function of double cones, it will be crucial to know how they are connected to the neural network in the avian retina. Here we use serial sectioning, multibeam scanning electron microscopy to investigate double-cone anatomy and connectivity with a particular focus on their contacts to other photoreceptor and bipolar cells in the chicken retina. We found that double cones are highly connected to neighboring double cones and with other photoreceptor cells through telodendria-to-terminal and telodendria-to-telodendria contacts. We also identified 15 bipolar cell types based on their axonal stratifications, photoreceptor contact pattern, soma position, and dendritic and axonal field mosaics. Thirteen of these 15 bipolar cell types contacted at least one or both members of the double cone. All bipolar cells were bistratified or multistratified. We also identified surprising contacts between other cone types and between rods and cones. Our data indicate a much more complex connectivity network in the outer plexiform layer of the avian retina than originally expected.SIGNIFICANCE STATEMENT Like in humans, vision is one of the most important senses for birds. Here, we present the first serial section multibeam scanning electron microscopy dataset from any bird retina. We identified many previously undescribed rod-to-cone and cone-to-cone connections. Surprisingly, of the 15 bipolar cell types we identified, 11 received input from rods and 13 of 15 received at least part of their input from double cones. Therefore, double cones seem to play many different and important roles in avian retinal processing, and the neural network and thus information processing in the outer retina are much more complex than previously expected. These fundamental findings will be very important for several fields of science, including vertebrate vision, avian magnetoreception, and comparative neuroanatomy.


Assuntos
Retina/ultraestrutura , Células Bipolares da Retina/ultraestrutura , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Vias Visuais/ultraestrutura , Animais , Galinhas , Microscopia Eletrônica de Varredura
12.
Dev Biol ; 476: 218-239, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33848537

RESUMO

Synapses in the outer retina are the first information relay points in vision. Here, photoreceptors form synapses onto two types of interneurons, bipolar cells and horizontal cells. Because outer retina synapses are particularly large and highly ordered, they have been a useful system for the discovery of mechanisms underlying synapse specificity and maintenance. Understanding these processes is critical to efforts aimed at restoring visual function through repairing or replacing neurons and promoting their connectivity. We review outer retina neuron synapse architecture, neural migration modes, and the cellular and molecular pathways that play key roles in the development and maintenance of these connections. We further discuss how these mechanisms may impact connectivity in the retina.


Assuntos
Células Fotorreceptoras/citologia , Sinapses/metabolismo , Visão Ocular/fisiologia , Animais , Humanos , Interneurônios/fisiologia , Células Fotorreceptoras/fisiologia , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Horizontais da Retina/fisiologia , Sinapses/fisiologia
13.
J Neurosci ; 40(23): 4483-4511, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32332119

RESUMO

Gap junctions are ubiquitous throughout the nervous system, mediating critical signal transmission and integration, as well as emergent network properties. In mammalian retina, gap junctions within the Aii amacrine cell-ON cone bipolar cell (CBC) network are essential for night vision, modulation of day vision, and contribute to visual impairment in retinal degenerations, yet neither the extended network topology nor its conservation is well established. Here, we map the network contribution of gap junctions using a high-resolution connectomics dataset of an adult female rabbit retina. Gap junctions are prominent synaptic components of ON CBC classes, constituting 5%-25% of all axonal synaptic contacts. Many of these mediate canonical transfer of rod signals from Aii cells to ON CBCs for night vision, and we find that the uneven distribution of Aii signals to ON CBCs is conserved in rabbit, including one class entirely lacking direct Aii coupling. However, the majority of gap junctions formed by ON CBCs unexpectedly occur between ON CBCs, rather than with Aii cells. Such coupling is extensive, creating an interconnected network with numerous lateral paths both within, and particularly across, these parallel processing streams. Coupling patterns are precise with ON CBCs accepting and rejecting unique combinations of partnerships according to robust rulesets. Coupling specificity extends to both size and spatial topologies, thereby rivaling the synaptic specificity of chemical synapses. These ON CBC coupling motifs dramatically extend the coupled Aii-ON CBC network, with implications for signal flow in both scotopic and photopic retinal networks during visual processing and disease.SIGNIFICANCE STATEMENT Electrical synapses mediated by gap junctions are fundamental components of neural networks. In retina, coupling within the Aii-ON CBC network shapes visual processing in both the scotopic and photopic networks. In retinal degenerations, these same gap junctions mediate oscillatory activity that contributes to visual impairment. Here, we use high-resolution connectomics strategies to identify gap junctions and cellular partnerships. We describe novel, pervasive motifs both within and across classes of ON CBCs that dramatically extend the Aii-ON CBC network. These motifs are highly specific with implications for both signal processing within the retina and therapeutic interventions for blinding conditions. These findings highlight the underappreciated contribution of coupling motifs in retinal circuitry and the necessity of their detection in connectomics studies.


Assuntos
Junções Comunicantes/fisiologia , Junções Comunicantes/ultraestrutura , Rede Nervosa/fisiologia , Retina/fisiologia , Retina/ultraestrutura , Animais , Feminino , Coelhos
14.
Exp Eye Res ; 207: 108553, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811915

RESUMO

PURPOSE: Retinal bipolar cells survive even in the later stages of inherited retinal degenerations (IRDs) and so are attractive targets for optogenetic approaches to vision restoration. However, it is not known to what extent the remodelling that these cells undergo during degeneration affects their function. Specifically, it is unclear if they are free from metabolic stress, receptive to adeno-associated viral vectors, suitable for opsin-based optogenetic tools and able to propagate signals by releasing neurotransmitter. METHODS: Fluorescence activated cell sorting (FACS) was performed to isolate labelled bipolar cells from dissociated retinae of litter-mates with or without the IRD mutation Pde6brd1/rd1 selectively expressing an enhanced yellow fluorescent protein (EYFP) as a marker in ON-bipolar cells. Subsequent mRNA extraction allowed Illumina® microarray comparison of gene expression in bipolar cells from degenerate to those of wild type retinae. Changes in four candidate genes were further investigated at the protein level using retinal immunohistochemistry over the course of degeneration. RESULTS: A total of sixty differentially expressed transcripts reached statistical significance: these did not include any genes directly associated with native primary bipolar cell signalling, nor changes consistent with metabolic stress. Four significantly altered genes (Srm2, Slf2, Anxa7 & Cntn1), implicated in synaptic remodelling, neurotransmitter release and viral vector entry had immunohistochemical staining colocalising with ON-bipolar cell markers and varying over the course of degeneration. CONCLUSION: Our findings suggest relatively few gene expression changes in the context of degeneration: that despite remodelling, bipolar cells are likely to remain viable targets for optogenetic vision restoration. In addition, several genes where changes were seen could provide a basis for investigations to enhance the efficacy of optogenetic therapies.


Assuntos
Anexina A7/genética , Contactina 1/genética , Regulação da Expressão Gênica/fisiologia , Células Bipolares da Retina/metabolismo , Degeneração Retiniana/genética , Espermidina Sintase/genética , Sulfatases/genética , Animais , Dependovirus/genética , Feminino , Citometria de Fluxo , Vetores Genéticos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Optogenética , Reação em Cadeia da Polimerase em Tempo Real
15.
Exp Eye Res ; 202: 108299, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33068627

RESUMO

Some bipolar cells in the human retina are known to express voltage-gated Na+ channels. However, it is unclear which types of channels are expressed, and whether Na+ channel expression is limited to specific types of bipolar cells. In the present study, we examined the types of voltage-gated Na+ channels expressed in human bipolar cells and the morphology of bipolar cells with voltage-gated Na+ currents. To investigate the expression of voltage-gated Na+ channels in human bipolar cells, we examined whether Na+ channel transcripts could be detected in single bipolar cells using the reverse transcription polymerase chain reaction (RT-PCR) technique. The voltage-gated Na+ current was recorded from isolated bipolar cells using the patch-clamp recording technique. Types of bipolar cells that have the Na+ currents were investigated by analyzing their morphology after staining with Lucifer yellow. Using RT-PCR, the SCN2A Na+ channel was detected in 5 of 6 isolated bipolar cells. This suggests that a subset of human bipolar cells expresses the SCN2A Na+ channel. Under voltage-clamp conditions, depolarizing voltage steps induced a fast transient inward current in cone bipolar cells with axon terminal boutons that stratified at the ON layer, which includes the stratum 3, 4, and 5 of the inner plexiform layer (IPL, n = 2/11 cells). The fast transient inward current of isolated bipolar cells was blocked by 1 µM of tetrodotoxin (TTX), a voltage-gated Na+ channel blocker. No fast transient inward current was recorded with axon terminals that stratify at the OFF layer, which includes stratum 1 and 2 of the IPL (n = 4). Thus, a subset of ON cone bipolar cells at least expresses the putative voltage-gated Na+ channel SCN2A in the human retina. The Na+ channels in the bipolar cells may serve to amplify the release of neurotransmitter, glutamate, when membrane potential is rapidly depolarized and thereby selectively accelerating light responses.


Assuntos
Regulação da Expressão Gênica/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Células Bipolares da Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Adulto , Idoso , Eletrofisiologia , Feminino , Humanos , Masculino , Potenciais da Membrana , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
16.
Exp Eye Res ; 212: 108770, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562437

RESUMO

PURPOSE: Cancer-associated retinal ON bipolar cell dysfunction (CARBD), which includes melanoma-associated retinopathy (MAR), has been reported to be caused by autoantibodies against the molecules expressed in ON bipolar cells, including TRPM1. The purpose of this study was to determine the antigenic regions of the autoantibodies against TRPM1 in the sera of CARBD patients, in whom we previously detected anti-TRPM1 autoantibodies. METHODS: The antigenic regions against TRPM1 in the sera of eight CARBD patients were examined by Western blots using HEK293T cells transfected with the plasmids expressing FLAG-tagged TRPM1 fragments. The clinical course of these patients was also documented. RESULTS: The clinical course differed among the patients. The electroretinograms (ERGs) and symptoms were improved in three patients, deteriorated in one patient, remained unchanged for a long time in one patient, and were not followable in three patients. Seven of the eight sera possessed multiple antigenic regions: two sera contained at least four antigen recognition regions, and three sera had at least three regions. The antigen regions were spread over the entire TRPM1 protein: five sera in the N-terminal intracellular domain, six sera in the transmembrane-containing region, and six sera in the C-terminal intracellular domain. No significant relationship was observed between the location of the antigen epitope and the patients' clinical course. CONCLUSIONS: The antigenic regions of anti-TRPM1 autoantibodies in CARBD patients were present not only in the N-terminal intracellular domain, which was reported in an earlier report, but also in the transmembrane-containing region and in the C-terminal intracellular domain. In addition, the antigenic regions for TRPM1 were found to vary among the CARBD patients examined, and most of the sera had multiple antigenic regions.


Assuntos
Autoanticorpos/sangue , Síndromes Paraneoplásicas Oculares/imunologia , Células Bipolares da Retina/metabolismo , Canais de Cátion TRPM/imunologia , Idoso , Western Blotting , Eletrorretinografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Paraneoplásicas Oculares/metabolismo , Síndromes Paraneoplásicas Oculares/patologia , Células Bipolares da Retina/patologia , Estudos Retrospectivos , Células Tumorais Cultivadas
17.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200611

RESUMO

One of the causes of nervous system degeneration is an excess of glutamate released upon several diseases. Glutamate analogs, like N-methyl-DL-aspartate (NMDA) and kainic acid (KA), have been shown to induce experimental retinal neurotoxicity. Previous results have shown that NMDA/KA neurotoxicity induces significant changes in the full field electroretinogram response, a thinning on the inner retinal layers, and retinal ganglion cell death. However, not all types of retinal neurons experience the same degree of injury in response to the excitotoxic stimulus. The goal of the present work is to address the effect of intraocular injection of different doses of NMDA/KA on the structure and function of several types of retinal cells and their functionality. To globally analyze the effect of glutamate receptor activation in the retina after the intraocular injection of excitotoxic agents, a combination of histological, electrophysiological, and functional tools has been employed to assess the changes in the retinal structure and function. Retinal excitotoxicity caused by the intraocular injection of a mixture of NMDA/KA causes a harmful effect characterized by a great loss of bipolar, amacrine, and retinal ganglion cells, as well as the degeneration of the inner retina. This process leads to a loss of retinal cell functionality characterized by an impairment of light sensitivity and visual acuity, with a strong effect on the retinal OFF pathway. The structural and functional injury suffered by the retina suggests the importance of the glutamate receptors expressed by different types of retinal cells. The effect of glutamate agonists on the OFF pathway represents one of the main findings of the study, as the evaluation of the retinal lesions caused by excitotoxicity could be specifically explored using tests that evaluate the OFF pathway.


Assuntos
Células Amácrinas/patologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Glutâmico/metabolismo , N-Metilaspartato/análogos & derivados , Células Ganglionares da Retina/patologia , Transtornos da Visão/patologia , Células Amácrinas/efeitos dos fármacos , Células Amácrinas/metabolismo , Animais , Apoptose , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Transtornos da Visão/induzido quimicamente , Transtornos da Visão/metabolismo
18.
J Neurophysiol ; 123(5): 1828-1837, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32233906

RESUMO

In the retina, modulation of the amplitude of dim visual signals primarily occurs at axon terminals of rod bipolar cells (RBCs). GABA and glycine inhibitory neurotransmitter receptors and the excitatory amino acid transporter 5 (EAAT5) modulate the RBC output. EAATs clear glutamate from the synapse, but they also have a glutamate-gated chloride conductance. EAAT5 acts primarily as an inhibitory glutamate-gated chloride channel. The relative role of visually evoked EAAT5 inhibition compared with GABA and glycine inhibition has not been addressed. In this study, we determine the contribution of EAAT5-mediated inhibition onto RBCs in response to light stimuli in mouse retinal slices. We find differences and similarities in the two forms of inhibition. Our results show that GABA and glycine mediate nearly all lateral inhibition onto RBCs, as EAAT5 is solely a mediator of RBC feedback inhibition. We also find that EAAT5 and conventional GABA inhibition both contribute to feedback inhibition at all stimulus intensities. Finally, our in silico modeling compares and contrasts EAAT5-mediated to GABA- and glycine-mediated feedback inhibition. Both forms of inhibition have a substantial impact on synaptic transmission to the postsynaptic AII amacrine cell. Our results suggest that the late phase EAAT5 inhibition acts with the early phase conventional, reciprocal GABA inhibition to modulate the rod signaling pathway between rod bipolar cells and their downstream synaptic targets.NEW & NOTEWORTHY Excitatory amino acid transporter 5 (EAAT5) glutamate transporters have a chloride channel that is strongly activated by glutamate, which modulates excitatory signaling. We found that EAAT5 is a major contributor to feedback inhibition on rod bipolar cells. Inhibition to rod bipolar cells is also mediated by GABA and glycine. GABA and glycine mediate the early phase of feedback inhibition, and EAAT5 mediates a more delayed inhibition. Together, inhibitory transmitters and EAAT5 coordinate to mediate feedback inhibition, controlling neuronal output.


Assuntos
Transportador 5 de Aminoácido Excitatório/metabolismo , Retroalimentação Fisiológica/fisiologia , Ácido Glutâmico/metabolismo , Inibição Neural/fisiologia , Células Bipolares da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Transdução de Sinais/fisiologia , Animais , Feminino , Glicina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Ácido gama-Aminobutírico/metabolismo
19.
Exp Eye Res ; 200: 108223, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32910942

RESUMO

Retinal signaling under dark-adapted conditions is perturbed during early diabetes. Additionally, dopamine, the main neuromodulator of retinal light adaptation, is diminished in diabetic retinas. However, it is not known if this dopamine deficiency changes how the retina responds to increased light or dopamine. Here we determine whether light adaptation is impaired in the diabetic retina, and investigate potential mechanism(s) of impairment. Diabetes was induced in C57BL/6J male mice via 3 intraperitoneal injections of streptozotocin (75 mg/kg) and confirmed by blood glucose levels more than 200 mg/dL. After 6 weeks, whole-cell recordings of light-evoked and spontaneous inhibitory postsynaptic currents (IPSCs) or excitatory postsynaptic currents (EPSCs) were made from rod bipolar cells and ON sustained ganglion cells, respectively. Light responses were recorded before and after D1 receptor (D1R) activation (SKF-38393, 20 µM) or light adaptation (background of 950 photons·µm-2 ·s-1). Retinal whole mounts were stained for either tyrosine hydroxylase and activated caspase-3 or GAD65/67, GlyT1 and RBPMS and imaged. D1R activation and light adaptation both decreased inhibition, but the disinhibition was not different between control and diabetic rod bipolar cells. However, diabetic ganglion cell light-evoked EPSCs were increased in the dark and showed reduced light adaptation. No differences were found in light adaptation of spontaneous EPSC parameters, suggesting upstream changes. No changes in cell density were found for dopaminergic, glycinergic or GABAergic amacrine cells, or ganglion cells. Thus, in early diabetes, ON sustained ganglion cells receive excessive excitation under dark- and light-adapted conditions. Our results show that this is not attributable to loss in number or dopamine sensitivity of inhibitory amacrine cells or loss of dopaminergic amacrine cells.


Assuntos
Adaptação Ocular/fisiologia , Diabetes Mellitus Experimental , Retinopatia Diabética/fisiopatologia , Dopamina/metabolismo , Células Bipolares da Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Animais , Morte Celular , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/metabolismo , Seguimentos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Transmissão Sináptica , Fatores de Tempo
20.
Vis Neurosci ; 37: E01, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32046810

RESUMO

During adaptation to an increase in environmental luminance, retinal signaling adjustments are mediated by the neuromodulator dopamine. Retinal dopamine is released with light and can affect center-surround receptive fields, the coupling state between neurons, and inhibitory pathways through inhibitory receptors and neurotransmitter release. While the inhibitory receptive field surround of bipolar cells becomes narrower and weaker during light adaptation, it is unknown how dopamine affects bipolar cell surrounds. If dopamine and light have similar effects, it would suggest that dopamine could be a mechanism for light-adapted changes. We tested the hypothesis that dopamine D1 receptor activation is sufficient to elicit the magnitude of light-adapted reductions in inhibitory bipolar cell surrounds. Surrounds were measured from OFF bipolar cells in dark-adapted mouse retinas while stimulating D1 receptors, which are located on bipolar, horizontal, and inhibitory amacrine cells. The D1 agonist SKF-38393 narrowed and weakened OFF bipolar cell inhibitory receptive fields but not to the same extent as with light adaptation. However, the receptive field surround reductions differed between the glycinergic and GABAergic components of the receptive field. GABAergic inhibitory strength was reduced only at the edges of the surround, while glycinergic inhibitory strength was reduced across the whole receptive field. These results expand the role of retinal dopamine to include modulation of bipolar cell receptive field surrounds. Additionally, our results suggest that D1 receptor pathways may be a mechanism for the light-adapted weakening of glycinergic surround inputs and the furthest wide-field GABAergic inputs to bipolar cells. However, remaining differences between light-adapted and D1 receptor-activated inhibition demonstrate that non-D1 receptor mechanisms are necessary to elicit the full effect of light adaptation on inhibitory surrounds.


Assuntos
Adaptação Ocular/fisiologia , Receptores de Dopamina D1/metabolismo , Células Bipolares da Retina/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Células Amácrinas/metabolismo , Animais , Agonistas de Dopamina/farmacologia , Potenciais Evocados Visuais , Glicina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Receptores de Dopamina D1/agonistas , Células Bipolares da Retina/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA