Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(44): E5954-62, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483492

RESUMO

Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.


Assuntos
Evolução Biológica , Padronização Corporal , Papilas Gustativas/embriologia , Dente/embriologia , Animais , Ciclídeos/embriologia , Camundongos , Dados de Sequência Molecular , Locos de Características Quantitativas , Transdução de Sinais
2.
Hepatol Res ; 46(8): 816-28, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26584962

RESUMO

AIM: Hepatic progenitor cells, called hepatoblasts, are highly proliferative and exhibit bipotential differentiation into hepatocytes and cholangiocytes in the fetal liver. Thus, they are the ideal source for transplantation therapy. Although several studies have been performed in vitro, the molecular mechanisms regulating hepatoblast differentiation in vivo following transplantation remain poorly understood. The aim of this study was to investigate an in vivo model to analyze hepatoblast bipotency and proliferative ability. METHODS: Hepatic transplantation model using Cre-inducible diphtheria toxin receptor-transgenic mice (iDTR), and albafpCre mice expressing Cre under the control of albumin and α-fetoprotein (AFP) regulatory elements were established. Fresh hepatoblasts were transplanted into diphtheria toxin (DT)-injected iDTRalbafpCre mice and we analyzed their differentiation and proliferation abilities by immunostaining and gene expression profiles. RESULTS: Fresh hepatoblasts transplanted into DT-injected iDTRalbafpCre mice engrafted and differentiated into both hepatocytes and cholangiocytes. Additionally, the number of engrafted hepatoblast-derived hepatocytes increased following partial hepatectomy and serial DT injections. Expression levels of hepatic functional genes in transplanted hepatoblast-derived hepatocytes were similar to that of normal hepatocytes. CONCLUSION: In our iDTRalbafpCre transplantation model, fresh hepatoblasts could differentiate into hepatocytes and cholangiocytes. In addition, these donor cells were induced to proliferate by the following liver injury stimulation. This result suggests that this model is valuable for investigating hepatoblast differentiation pathways in vivo.

3.
Elife ; 102021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34227938

RESUMO

In classical descriptions of vertebrate development, the segregation of the three embryonic germ layers completes by the end of gastrulation. Body formation then proceeds in a head to tail fashion by progressive deposition of lineage-committed progenitors during regression of the primitive streak (PS) and tail bud (TB). The identification by retrospective clonal analysis of a population of neuromesodermal progenitors (NMPs) contributing to both musculoskeletal precursors (paraxial mesoderm) and spinal cord during axis formation challenged these notions. However, classical fate mapping studies of the PS region in amniotes have so far failed to provide direct evidence for such bipotential cells at the single-cell level. Here, using lineage tracing and single-cell RNA sequencing in the chicken embryo, we identify a resident cell population of the anterior PS epiblast, which contributes to neural and mesodermal lineages in trunk and tail. These cells initially behave as monopotent progenitors as classically described and only acquire a bipotential fate later, in more posterior regions. We show that NMPs exhibit a conserved transcriptomic signature during axis elongation but lose their epithelial characteristicsin the TB. Posterior to anterior gradients of convergence speed and ingression along the PS lead to asymmetric exhaustion of PS mesodermal precursor territories. Through limited ingression and increased proliferation, NMPs are maintained and amplified as a cell population which constitute the main progenitors in the TB. Together, our studies provide a novel understanding of the PS and TB contribution through the NMPs to the formation of the body of amniote embryos.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/embriologia , Células-Tronco Neurais/citologia , Linha Primitiva/embriologia , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Embrião de Galinha/embriologia , Mesoderma/metabolismo , Células-Tronco Neurais/fisiologia , Linha Primitiva/metabolismo
4.
Stem Cell Res Ther ; 10(1): 364, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791391

RESUMO

BACKGROUND: The limited proliferative ability of hepatocytes is a major limitation to meet their demand for cell-based therapy, bio-artificial liver device, and drug tests. One strategy is to amplify cells at the hepatoblast (HB) stage. However, expansion of HBs with their bipotency preserved is challenging. Most HB expansion methods hardly maintain the bipotency and also lack functional confirmation. METHODS: On the basis of analyzing and manipulating related signaling pathways during HB (derived from human induced pluripotent stem cells, iPSCs) differentiation and proliferation, we established a specific chemically defined cocktails to synergistically regulate the related signaling pathways that optimize the balance of HB proliferation ability and stemness maintenance, to expand the HBs and investigate their capacity for injured liver repopulation in immune-deficient mice. RESULTS: We found that the proliferative ability progressively declines during HB differentiation process. Small molecule activation of Wnt or inhibition of TGF-ß pathways promoted HB proliferation but diminished their bipotency, whereas activation of hedgehog (HH) signaling stimulated proliferation and sustained HB phenotypes. A cocktail synergistically regulating the BMP/WNT/TGF-ß/HH pathways created a fine balance for expansion and maintenance of the bipotency of HBs. After purification, colony formation, and expansion for 20 passages, HBs retained their RNA profile integrity, normal karyotype, and ability to differentiate into mature hepatocytes and cholangiocytes. Moreover, upon transplantation into liver injured mice, the expanded HBs could engraft and differentiate into mature human hepatocytes and repopulate liver tissue with restoring hepatocyte mass. CONCLUSION: Our data contribute to the understanding of some signaling pathways for human HB proliferation in vitro. Simultaneous BMP/HGF induction, activation of Wnt and HH, and inhibition of TGF-ß pathways created a reliable method for long-term stable large-scale expansion of HBs to obtain mature hepatocytes that may have substantial clinical applications.


Assuntos
Hepatócitos/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Proteínas Hedgehog/metabolismo , Hepatócitos/citologia , Hepatócitos/transplante , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Falência Hepática/patologia , Falência Hepática/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo
5.
Exp Biol Med (Maywood) ; 241(15): 1653-62, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27390263

RESUMO

Due to the limitations of research using human embryos and the lack of a biological model of human liver development, the roles of the various markers associated with liver stem or progenitor cell potential in humans are largely speculative, and based on studies utilizing animal models and certain patient tissues. Human pluripotent stem cell-based in vitro multistage hepatic differentiation systems may serve as good surrogate models for mimicking normal human liver development, pathogenesis and injury/regeneration studies. Here, we describe the implications of various liver stem or progenitor cell markers and their bipotency (i.e. hepatocytic- and biliary-epithelial cell differentiation), based on the pluripotent stem cell-derived model of human liver development. Future studies using the human cellular model(s) of liver and biliary development will provide more human relevant biological and/or pathological roles of distinct markers expressed in heterogeneous liver stem/progenitor cell populations.


Assuntos
Sistema Biliar/crescimento & desenvolvimento , Diferenciação Celular/fisiologia , Hepatócitos/fisiologia , Fígado/crescimento & desenvolvimento , Células-Tronco/fisiologia , Animais , Sistema Biliar/citologia , Biomarcadores , Humanos , Fígado/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA