RESUMO
BACKGROUND: Cancer immunotherapy approaches that elicit immune cell responses, including T and NK cells, have revolutionized the field of oncology. However, immunosuppressive mechanisms restrain immune cell activation within solid tumors so additional strategies to augment activity are required. METHODS: We identified the co-stimulatory receptor NKG2D as a target based on its expression on a large proportion of CD8+ tumor infiltrating lymphocytes (TILs) from breast cancer patient samples. Human and murine surrogate NKG2D co-stimulatory receptor-bispecifics (CRB) that bind NKG2D on NK and CD8+ T cells as well as HER2 on breast cancer cells (HER2-CRB) were developed as a proof of concept for targeting this signaling axis in vitro and in vivo. RESULTS: HER2-CRB enhanced NK cell activation and cytokine production when co-cultured with HER2 expressing breast cancer cell lines. HER2-CRB when combined with a T cell-dependent-bispecific (TDB) antibody that synthetically activates T cells by crosslinking CD3 to HER2 (HER2-TDB), enhanced T cell cytotoxicity, cytokine production and in vivo antitumor activity. A mouse surrogate HER2-CRB (mHER2-CRB) improved in vivo efficacy of HER2-TDB and augmented NK as well as T cell activation, cytokine production and effector CD8+ T cell differentiation. CONCLUSION: We demonstrate that targeting NKG2D with bispecific antibodies (BsAbs) is an effective approach to augment NK and CD8+ T cell antitumor immune responses. Given the large number of ongoing clinical trials leveraging NK and T cells for cancer immunotherapy, NKG2D-bispecifics have broad combinatorial potential.
Assuntos
Neoplasias da Mama , Linfócitos T CD8-Positivos , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Animais , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Células Matadoras Naturais/imunologia , Feminino , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Receptor ErbB-2/imunologia , Linhagem Celular Tumoral , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismoRESUMO
The biotechnological development of monoclonal antibodies and their immunotherapeutic use in oncology have grown exponentially in the last decade, becoming the first-line therapy for some types of cancer. Their mechanism of action is based on the ability to regulate the immune system or by interacting with targets that are either overexpressed in tumor cells, released into the extracellular milieu or involved in processes that favor tumor growth. In addition, the intrinsic characteristics of each subclass of antibodies provide specific effector functions against the tumor by activating antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, among other mechanisms. The rational design and engineering of monoclonal antibodies have improved their pharmacokinetic and pharmacodynamic features, thus optimizing the therapeutic regimens administered to cancer patients and improving their clinical outcomes. The selection of the immunoglobulin G subclass, modifications to its crystallizable region (Fc), and conjugation of radioactive substances or antineoplastic drugs may all improve the antitumor effects of therapeutic antibodies. This review aims to provide insights into the immunological and pharmacological aspects of therapeutic antibodies used in oncology, with a rational approach at molecular modifications that can be introduced into these biological tools, improving their efficacy in the treatment of cancer.
Assuntos
Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Animais , Imunoterapia/métodos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologiaRESUMO
Bispecific antibodies (BsAbs), which target two antigens or epitopes, incorporate the specificities and properties of two distinct monoclonal antibodies (mAbs) into a single molecule. As such, BsAbs can elicit synergistic activities and provide the capacity for enhanced therapeutic efficacy and/or safety compared to what can be achieved with conventional monospecific IgGs. There are many building block formats to generate BsAbs and Trispecific antibodies (TsAbs) based on combining the antigen recognition domains of monoclonal antibodies (mAbs). This review describes the many and varied antibody-based building blocks used to achieve multivalency and multispecificity. These diverse building blocks provide opportunities to tailor the design of BsAbs and TsAbs to match the desired applications.
Assuntos
Anticorpos Biespecíficos , Anticorpos Monoclonais , Engenharia de ProteínasRESUMO
Nonclinical safety testing of biopharmaceuticals can present significant challenges to human risk assessment with these innovative and often complex drugs. Emerging topics in this field were discussed recently at the 2016 Annual US BioSafe General Membership meeting. The presentations and subsequent discussions from the main sessions are summarized. The topics covered included: (i) specialty biologics (oncolytic virus, gene therapy, and gene editing-based technologies), (ii) the value of non-human primates (NHPs) for safety assessment, (iii) challenges in the safety assessment of immuno-oncology drugs (T cell-dependent bispecifics, checkpoint inhibitors, and costimulatory agonists), (iv) emerging therapeutic approaches and modalities focused on microbiome, oligonucleotide, messenger ribonucleic acid (mRNA) therapeutics, (v) first in human (FIH) dose selection and the minimum anticipated biological effect level (MABEL), (vi) an update on current regulatory guidelines, International Council for Harmonization (ICH) S1, S3a, S5, S9 and S11 and (vii) breakout sessions that focused on bioanalytical and PK/PD challenges with bispecific antibodies, cytokine release in nonclinical studies, determining adversity and NOAEL for biologics, the value of second species for toxicology assessment and what to do if there is no relevant toxicology species.
Assuntos
Produtos Biológicos/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Animais , Anticorpos Monoclonais/toxicidade , Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Humanos , Proteínas Recombinantes/toxicidade , Medição de RiscoRESUMO
New challenges and opportunities in nonclinical safety testing of biologics were discussed at the 3rd European BioSafe Annual General Membership meeting in November 2013 in Berlin: (i)Approaches to refine use of non-human primates in non-clinical safety testing of biologics and current experience on the use of minipigs as alternative non-rodent species.(ii)Tissue distribution studies as a useful tool to support pharmacokinetic/pharmacodynamic (PKPD) assessment of biologics, in that they provide valuable mechanistic insights at drug levels at the site of action.(iii)Mechanisms of nonspecific toxicity of antibody drug conjugates (ADC) and ways to increase the safety margins.(iv)Although biologics toxicity typically manifests as exaggerated pharmacology there are some reported case studies on unexpected toxicity.(v)Specifics of non-clinical development approaches of noncanonical monoclonal antibodies (mAbs), like bispecifics and nanobodies.
Assuntos
Anticorpos Monoclonais/efeitos adversos , Produtos Biológicos/efeitos adversos , Avaliação Pré-Clínica de Medicamentos/métodos , Segurança , Testes de Toxicidade , Animais , Anticorpos Biespecíficos/efeitos adversos , Anticorpos Biespecíficos/farmacocinética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Produtos Biológicos/imunologia , Produtos Biológicos/farmacocinética , Humanos , Modelos Animais , Primatas , Anticorpos de Domínio Único/efeitos adversos , Suínos , Porco Miniatura , Distribuição TecidualRESUMO
We present the case of a dialyzed patient with relapsed IgA and lambda free light chain multiple myeloma treated with elranatamab. Despite end-stage renal impairment, the treatment with anti-B cell maturation antigen (BCMA)xCD3 bispecific antibody proved to be feasible, without unexpected side effects. Increased attention to infectious risk is crucial for these doubly fragile patients.
RESUMO
B-cell non-Hodgkin's lymphoma (NHL) refers to a heterogenous group of diseases, all of which have a wide range of treatment strategies and patient outcomes. There have been multiple novel, immune-based therapies approved in NHL in the last decade, including bispecific antibodies (BsAbs) and chimeric antigen receptor therapy (CAR-T). With a host of new therapies, an important next step will be determining how these therapies should be sequenced in contemporary management strategies. This review seeks to offer a framework for the ways in which BsABs can be incorporated into the current management paradigm for NHL, with special attention paid to diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and mantle cell lymphoma (MCL).
RESUMO
OBJECTIVE: To understand clinicians' current teclistamab step-up dosing (SUD) model and how they envision future administration models, as well as perceived barriers and facilitators to these models in day-to-day clinical practice. METHODS: Interviews of clinicians with RW experience administering teclistamab, with a subsequent roundtable discussion to discuss interview findings. Topics of interest included managing adverse events (AE), and handling logistics of SUD and transition of care (ToC). RESULTS: 20 clinicians representing 19 practices participated. Of 14 practices administering inpatient teclistamab SUD, 12 (86%) utilized a single admission. A day 1-3-5 dosing schedule with a 7-day length of stay was planned in 10/14 (71%). The remaining 5 practices employed outpatient or hybrid SUD. SUD models depended on cellular therapy experience, patient volume, and monitoring capabilities. Clinicians desired to administer SUD outpatient for convenience and reduced healthcare resource use. 11% of practices reported using tocilizumab for cytokine release syndrome (CRS) prophylaxis, whilst it was uniformly used to treat grade 2+ CRS. Corticosteroids were the preferred treatment for neurotoxicity. Infection prophylaxis with intravenous immunoglobulin was reported by 89% of practices. Patient- and institution-level factors affected decision-making of transitioning patients back to referring sites after SUD. CONCLUSION: The results consolidated practice-based experiences and indicated diverse RW SUD models and patient management strategies in practices with familiarity with teclistamab AE management and ToC protocols. Inpatient SUD is common, with expectations that approaches will evolve toward outpatient or community-based administration. Further research is needed to investigate outcomes of different care models and AE management strategies.
Multiple myeloma is a blood cancer that forms in plasma cells. Teclistamab is a new treatment for patients with multiple myeloma who have received prior treatment but for whom their multiple myeloma has come back or stopped responding to treatment multiple times. Because teclistamab works differently than other existing multiple myeloma treatments, there is a need to understand how oncologists who have experience with teclistamab are managing their patients in order to inform best practices for use by more healthcare providers. We interviewed oncologists that treat patients with multiple myeloma to understand their experiences with teclistamab, including how they manage initial dosing (step-up dosing) processes, treat adverse events, and transition patients to outpatient or external clinics for continued care. Most practices were administering step-up dosing of teclistamab in an inpatient setting soon after teclistamab became a treatment option, with a high level of desire to move the initial dosing to an outpatient setting in the near future. Those that were already administering step-up dosing in an outpatient setting had models unique to their practice. Oncologists described numerous processes for monitoring and managing adverse events of the treatment, including treating patients with preventative medications and regularly monitoring vital signs throughout step-up dosing. Oncologists expected that their teclistamab administration processes will likely evolve over time as they gain more familiarity with the treatment, and will need to consider patient-level factors to administer step-up dosing in an outpatient setting.
RESUMO
T-cell engagers (TCEs) represent a promising therapeutic strategy for various cancers and autoimmune disorders. These bispecific antibodies act as bridges, connecting T-cell receptors (TCRs) to target cells (either malignant or autoreactive) via interactions with specific tumour-associated antigens (TAAs) or autoantigens to form trimeric synapses, or trimers, that co-localise T-cells with target cells and stimulate their cytotoxic function. Bispecific TCEs are expected to exhibit a bell-shaped dose-response curve, with a defined optimal TCE exposure for maximizing trimer formation. The shape of the dose-response is determined by a non-trivial interplay of binding affinities, exposure and antigens expression levels. Furthermore, excessively low binding to the TCR may reduce efficacy, but mitigate risk of over-stimulating cytokine secretion or induce effector cell exhaustion. These inevitable trade-off highlights the importance of quantitatively understanding the relationship between TCE concentration, target expression, binding affinities, and trimer formation. We utilized a mechanistic target engagement model to show that, if the TCE design parameters are close to the recommended ranges found in the literature, relative affinities for TCR, TAA and target expression levels have qualitatively different, but predictable, effects on the resulting dose-response curve: higher expression levels shift the curve upwards, higher antigen affinity shifts the curve to the left, and higher TCR affinity shifts the curve upwards and to the left.
RESUMO
Engineered antibody formats, such as antibody fragments and bispecifics, have the potential to offer improved therapeutic efficacy compared to traditional full-length monoclonal antibodies (mAbs). However, the translation of these non-natural molecules into successful therapeutics can be hampered by developability challenges. Here, we systematically analyzed 64 different antibody constructs targeting Tumor Necrosis Factor (TNF) which cover 8 distinct molecular format families, encompassing full-length antibodies, various types of single chain variable fragments, and bispecifics. We measured 15 biophysical properties related to activity, manufacturing, and stability, scoring variants with a flag-based risk approach and a recent in silico developability profiler. Our comparative assessment revealed that overall developability is higher for the natural full-length antibody format. Bispecific antibodies, antibodies with scFv fragments at the C-terminus of the light chain, and single-chain Fv antibody fragments (scFvs) have intermediate developability properties, while more complicated formats, such as scFv- scFv, bispecific mAbs with one Fab exchanged with a scFv, and diabody formats are collectively more challenging. In particular, our study highlights the propensity for fragmentation and aggregation, both in bulk and at interfaces, for many current engineered formats.
Assuntos
Anticorpos Biespecíficos , Engenharia de Proteínas , Estabilidade Proteica , Anticorpos de Cadeia Única , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/química , Humanos , Engenharia de Proteínas/métodos , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/química , Fator de Necrose Tumoral alfa/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genéticaRESUMO
There have been significant advancements in the management of follicular lymphoma (FL), the most common indolent lymphoma. These include immunomodulatory agents such as lenalidomide, epigenetic modifiers (tazemetostat), and phosphoinotiside-3 kinase inhibitors (copanlisib). The focus of this review is T cell-engager therapies, namely chimeric antigen receptor (CAR) T-cell therapy and bispecific antibodies, have recently transformed the treatment landscape of FL. Two CAR T cell products, axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel), and one bispecific antibody, mosunetuzumab, recently received FDA approvals in FL. Several other new immune effector drugs are being evaluated and will expand the treatment armamentarium. This review focuses on CAR T-cell and bispecific antibody therapies, details their safety and efficacy and considers their evolving role in the current treatment landscape of FL.
Assuntos
Anticorpos Biespecíficos , Linfoma Folicular , Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Humanos , Anticorpos Biespecíficos/uso terapêutico , Centro Germinativo , Imunoterapia Adotiva , Linfoma Folicular/terapia , Linfócitos TRESUMO
Bispecific biotherapeutics offer potent and highly specific treatment options in oncology and immuno-oncology. However, many bispecific formats are prone to high levels of aggregation and instability, leading to prolonged development timelines, inefficient manufacturing, and high costs. The novel class of Mabcalin™ molecules consist of Anticalin® proteins fused to an IgG and are currently being evaluated in pre-clinical and clinical studies. Here, we describe a robust high-yield manufacturing platform for these therapeutic fusion proteins providing data up to commercially relevant scales. A platform upstream process was established for one of the Mabcalin bispecifics and then applied to other clinically relevant drug candidates with different IgG target specificities. Process performance was compared in 3â¯L bioreactors and production was scaled-up to up to 1000â¯L for confirmation. The Mabcalin proteins' structural and biophysical similarities enabled a downstream platform approach consisting of initial protein A capture, viral inactivation, mixed-mode anion exchange polishing, second polishing by cation exchange or hydrophobic interaction chromatography, viral filtration, buffer exchange and concentration by ultrafiltration/diafiltration. All three processes met their target specifications and achieved comparable clearance of impurities and product yields across scales. The described platform approach provides a fast and economic path to process confirmation and is well comparable to classical monoclonal antibody approaches in terms of costs and time to clinic.
Assuntos
Anticorpos Monoclonais , Reatores Biológicos , Anticorpos Monoclonais/química , Cromatografia , Ultrafiltração , Imunoglobulina GRESUMO
Regulatory approvals of Bruton tyrosine kinase (BTK) inhibitors and BCL2 inhibitors have transformed the therapeutic paradigm in chronic lymphocytic leukemia (CLL). However, despite significant improvement, treatment discontinuations due to an acquired resistance mutation or intolerance to these agents are common. Those who are refractory and/or intolerant to both these classes of drugs - the "double exposed/refractory" patients - pose a real challenge in clinical practice and are in dire need of novel therapeutic approaches. In this manuscript, we review the ongoing efforts addressing this unmet clinical need including the ongoing development of non-covalent BTK inhibitors, BTK degraders, novel BH3-mimetics, therapeutic antibodies targeting novel antigens and immune cell enabling therapies.
Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Tirosina Quinase da Agamaglobulinemia , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Bispecific antibodies continue to represent a growth area for antibody therapeutics, with roughly a third of molecules in clinical development being T-cell engagers that use an anti-CD3 binding arm. CD3 antibodies possessing cross-reactivity with cynomolgus monkey typically recognize a highly electronegative linear epitope at the extreme N-terminus of CD3 epsilon (CD3ε). Such antibodies have high isoelectric points and display problematic polyreactivity (correlated with poor pharmacokinetics for monospecific antibodies). Using insights from the crystal structure of anti-Hu/Cy CD3 antibody ADI-26906 in complex with CD3ε and antibody engineering using a yeast-based platform, we have derived high-affinity CD3 antibody variants with very low polyreactivity and significantly improved biophysical developability. Comparison of these variants with CD3 antibodies in the clinic (as part of bi- or multi-specifics) shows that affinity for CD3 is correlated with polyreactivity. Our engineered CD3 antibodies break this correlation, forming a broad affinity range with no to low polyreactivity. Such antibodies will enable bispecifics with improved pharmacokinetic and safety profiles and suggest engineering solutions that will benefit the large and growing sector of T-cell engagers.
Assuntos
Anticorpos Biespecíficos , Animais , Macaca fascicularis , Linfócitos T , Complexo CD3 , Muromonab-CD3RESUMO
In recent years, the development of bispecific antibodies (bsAbs) has experienced tremendous progress for disease treatment, and consequently, a plethora of bsAbs is currently scrutinized in clinical trials. Besides antibody scaffolds, multifunctional molecules referred to as immunoligands have been developed. These molecules typically harbor a natural ligand entity for the engagement of a specific receptor, while binding to the additional antigen is facilitated by an antibody-derived paratope. Immunoligands can be exploited to conditionally activate immune cells, e.g., natural killer (NK) cells, in the presence of tumor cells, ultimately causing target-dependent tumor cell lysis. However, many ligands naturally show only moderate affinities toward their cognate receptor, potentially hampering killing capacities of immunoligands. Herein, we provide protocols for yeast surface display-based affinity maturation of B7-H6, the natural ligand of NK cell-activating receptor NKp30.
Assuntos
Neoplasias , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Ligantes , Receptor 3 Desencadeador da Citotoxicidade Natural/química , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Antígenos B7/química , Antígenos B7/metabolismo , Neoplasias/metabolismo , Células Matadoras NaturaisRESUMO
Traditional drug safety assessments often fail to predict complications in humans, especially when the drug targets the immune system. Rodent-based preclinical animal models are often ill-suited for predicting immunotherapy-mediated adverse events in humans, in part because of the fundamental differences in immunological responses between species and the human relevant expression profile of the target antigen, if it is expected to be present in normal, healthy tissue. While human-relevant cell-based models of tissues and organs promise to bridge this gap, conventional in vitro two-dimensional models fail to provide the complexity required to model the biological mechanisms of immunotherapeutic effects. Also, like animal models, they fail to recapitulate physiologically relevant levels and patterns of organ-specific proteins, crucial for capturing pharmacology and safety liabilities. Organ-on-Chip models aim to overcome these limitations by combining micro-engineering with cultured primary human cells to recreate the complex multifactorial microenvironment and functions of native tissues and organs. In this protocol, we show the unprecedented capability of two human Organs-on-Chip models to evaluate the safety profile of T cell-bispecific antibodies (TCBs) targeting tumor antigens. These novel tools broaden the research options available for a mechanistic understanding of engineered therapeutic antibodies and for assessing safety in tissues susceptible to adverse events. Graphical abstract Figure 1. Graphical representation of the major steps in target-dependent T cell-bispecific antibodies engagement and immunomodulation, as performed in the Colon Intestine-Chip.
RESUMO
TYRP1-TCB is a CD3 T-cell bispecific (CD3-TCB) antibody for the treatment of advanced melanoma. A tumor growth inhibition (TGI) model was developed using mouse xenograft data with TYRP1-TCB monotherapy or TYRP1-TCB plus anti-PD-L1 combination. The model was translated to humans to inform a refined clinical strategy. From xenograft mouse data, we estimated an EC50 of 0.345 mg/L for TYRP1-TCB, close to what was observed in vitro using the same tumor cell line. The model showed that, though increasing the dose of TYRP1-TCB in monotherapy delays the time to tumor regrowth and promotes higher tumor cell killing, it also induces a faster rate of tumor regrowth. Combination with anti-PD-L1 extended the time to tumor regrowth by 25% while also decreasing the tumor regrowth rate by 69% compared to the same dose of TYRP1-TCB alone. The model translation to humans predicts that if patients' tumors were scanned every 6 weeks, only 46% of the monotherapy responders would be detected even at a TYRP1-TCB dose resulting in exposures above the EC90. However, combination of TYRP1-TCB and anti-PD-L1 in the clinic is predicted to more than double the overall response rate (ORR), duration of response (DoR) and progression-free survival (PFS) compared to TYRP1-TCB monotherapy. As a result, it is highly recommended to consider development of CD3-TCBs as part of a combination therapy from the outset, without the need to escalate the CD3-TCB up to the Maximum Tolerated Dose (MTD) in monotherapy and without gating the combination only on RECIST-derived efficacy metrics.
Assuntos
Anticorpos Biespecíficos , Melanoma , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Linhagem Celular Tumoral , Humanos , Camundongos , Linfócitos TRESUMO
Natural Killer Group 2D (NKG2D) is a homo-dimeric transmembrane protein which is typically expressed on the surface of natural killer (NK) cells, natural killer T (NKT) cells, gamma delta T (γδT) cells, activated CD8 positive T-cells and activated macrophages. Bispecific molecules, capable of bridging NKG2D with a target protein expressed on the surface of tumor cells, may be used to redirect the cytotoxic activity of NK-cells towards antigen-positive malignant T-cells. In this work, we report the discovery of a novel NKG2D small molecule binder [KD =(410±60) nM], isolated from a DNA-Encoded Chemical Library (DEL). The discovery of small organic NKG2D ligands may facilitate the generation of fully synthetic bispecific adaptors, which may serve as an alternative to bispecific antibody products and which may benefit from better tumor targeting properties.
Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK , Bibliotecas de Moléculas Pequenas , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ligantes , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/metabolismo , Células Matadoras Naturais , DNA/metabolismoRESUMO
pHLA complexes represent the largest class of cell surface markers on cancer cells, making them attractive for targeted cancer therapies. Adoptive cell therapies expressing TCRs that recognize tumor specific pHLAs take advantage of the unique selectivity and avidity of TCR: pHLA interactions. More recently, additional protein binding domains binding to pHLAs, known as TCR mimics (TCRm), were developed for tumor targeting of high potency therapeutic modalities, including bispecifics, ADCs, CAR T and -NK cells. TCRm compounds take advantage of the exquisite tumor specificity of certain pHLA targets, including cell lineage commitment markers and cancer testis antigens (CTAs). To achieve meaningful anti-tumor responses, it is critical that TCRm compounds integrate both, high target binding affinities and a high degree of target specificity. In this review, we describe the most advanced approaches to achieve both criteria, including affinity- and specificity engineering of TCRs, antibodies and alternative protein scaffolds. We also discuss the status of current TCRm based therapeutics developed in the clinic, key challenges, and emerging trends to improve treatment options for cancer patients treated with TCRm based therapeutics in Oncology.
RESUMO
CD3-bispecific antibodies are a new class of immunotherapeutic drugs against cancer. The pharmacological activity of CD3-bispecifics is typically assessed through in vitro assays of cancer cell lines co-cultured with human peripheral blood mononuclear cells (PBMCs). Assay results depend on experimental conditions such as incubation time and the effector-to-target cell ratio, which can hinder robust quantification of pharmacological activity. In order to overcome these limitations, we developed a new, holistic approach for quantification of the in vitro dose-response relationship. Our experimental design integrates a time-independent analysis of the dose-response across different time points as an alternative to the static, "snap-shot" analysis based on a single time point commonly used in dose-response assays. We show that the potency values derived from static in vitro experiments depend on the incubation time, which leads to inconsistent results across multiple assays and compounds. We compared the potency values from the time-independent analysis with a model-based approach. We find comparably accurate potency estimates from the model-based and time-independent analyses and that the time-independent analysis provides a robust quantification of pharmacological activity. This approach may allow for an improved head-to-head comparison of different compounds and test systems and may prove useful for supporting first-in-human dose selection.