Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Small ; 20(26): e2310120, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38279619

RESUMO

Supercapacitors (SCs) with outstanding versatility have a lot of potential applications in next-generation electronics. However, their practical uses are limited by their short working potential window and ultralow-specific capacity. Herein, the facile one-step in-situ hydrothermal synthesis is employed for the construction of a NiMo3S4/BP (black phosphorous) hybrid with a 3D hierarchical structure. After optimization, the NiMo3S4/BP hybrid displays a high specific capacitance of 830 F/g at 1 A/g compared to the pristine NiMo3S4 electrode. The fabricated NiMo3S4/BP//NiCo2S4/Ti3C2Tx asymmetric supercapacitor exhibits a better specific capacitance of 120 F/g at 0.5 A/g, which also demonstrates a high energy density of 54 Wh/kg at 1148.53 W/kg and good cycle stability with capacity retention of 86% and 97% of Coulombic efficiency after 6000 cycles. Further from the DFT simulations, the hybrid NiMo3S4/BP structure shows higher conductivity and quantum capacitance, which demonstrate greater charge storage capability, due to enhanced electronic states near the Fermi level. The lower diffusion energy barrier for the electrolyte K+ ions in the hybrid structure is facilitated by improved charge transfer performance for the hybrid NiMo3S4/BP. This work highlights the potential significance of hybrid nanoarchitectonics and compositional tunability as an emerging method for improving the charge storage capabilities of active electrodes.

2.
J Nanobiotechnology ; 22(1): 174, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609922

RESUMO

Photothermal therapy is favored by cancer researchers due to its advantages such as controllable initiation, direct killing and immune promotion. However, the low enrichment efficiency of photosensitizer in tumor site and the limited effect of single use limits the further development of photothermal therapy. Herein, a photo-responsive multifunctional nanosystem was designed for cancer therapy, in which myeloid-derived suppressor cell (MDSC) membrane vesicle encapsulated decitabine-loaded black phosphorous (BP) nanosheets (BP@ Decitabine @MDSCs, named BDM). The BDM demonstrated excellent biosafety and biochemical characteristics, providing a suitable microenvironment for cancer cell killing. First, the BDM achieves the ability to be highly enriched at tumor sites by inheriting the ability of MDSCs to actively target tumor microenvironment. And then, BP nanosheets achieves hyperthermia and induces mitochondrial damage by its photothermal and photodynamic properties, which enhancing anti-tumor immunity mediated by immunogenic cell death (ICD). Meanwhile, intra-tumoral release of decitabine induced G2/M cell cycle arrest, further promoting tumor cell apoptosis. In vivo, the BMD showed significant inhibition of tumor growth with down-regulation of PCNA expression and increased expression of high mobility group B1 (HMGB1), calreticulin (CRT) and caspase 3. Flow cytometry revealed significantly decreased infiltration of MDSCs and M2-macrophages along with an increased proportion of CD4+, CD8+ T cells as well as CD103+ DCs, suggesting a potentiated anti-tumor immune response. In summary, BDM realizes photothermal therapy/photodynamic therapy synergized chemotherapy for cancer.


Assuntos
Células Supressoras Mieloides , Neoplasias , Fotoquimioterapia , Biomimética , Linfócitos T CD8-Positivos , Decitabina/farmacologia , Terapia Fototérmica , Neoplasias/tratamento farmacológico
3.
Mikrochim Acta ; 190(6): 228, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204518

RESUMO

Despite black phosphorous (BP) QDs possess the merits of size-tunable band-gap, high electron mobility, and intrinsic defects, the spontaneous agglomeration and rapid oxidation of BP QDs in aqueous solution caused low electrochemiluminescence (ECL) efficiency and unstable ECL signal, which confined its further application of biological analysis. Herein, polyethylene glycol-functionalized BP QDs (PEG@BP QDs) were prepared showing an efficient and stable ECL response, which is attributed to the fact that PEG as protectant not only effectively prevented the spontaneous agglomeration, but also restrained the rapid oxidation of BP QDs in aqueous solution. As proof-of-concept, PEG@BP QDs were used as an efficient ECL emitter to combine with palindrome amplification-induced DNA walker to construct a sensitive ECL aptasensing platform for detecting cancer marker mucin 1 (MUC1). Interestingly, with the aid of positively charged thiolated PEG, the reaction rate of DNA walker on the electrode interface was clearly increased for the recovery of the ECL signal. The ECL aptasensor provides sensitive determination with the detection limit of 16.5 fg/mL. The proposed strategy paves a path for the development of efficient and stable ECL nanomaterials to construct biosensors for biosensing and clinical diagnosis.


Assuntos
Pontos Quânticos , Medições Luminescentes , Biomarcadores Tumorais , Fotometria , Água , DNA
4.
Angew Chem Int Ed Engl ; 62(19): e202216822, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36917027

RESUMO

Pd-catalyzed chemistry has played a significant role in the growing subfield of bioorthogonal catalysis. However, rationally designing Pd nanocatalysts that show outstanding catalytic activity and good biocompatibility poses a great challenge. Herein, we propose an innovative strategy through exploiting black phosphorous nanosheets (BPNSs) to enhance Pd-mediated bioorthogonal catalytic activity. Firstly, the electron-donor properties of BPNSs enable in situ growth of Pd nanoparticles (PdNPs) on it. Meanwhile, due to the superb capability of reducing PdII , BPNSs can act as hard nucleophiles to accelerate the transmetallation in the decaging reaction process. Secondly, the lone pair electrons of BPNSs can firmly anchor PdNPs on their surface via Pd-P bonds. This design endows Pd/BP with the capability to retard tumor growth by activating prodrugs. This work proposes new insights into the design of heterogeneous transition-metal catalysts (TMCs) for bioorthogonal catalysis.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Humanos , Paládio/química , Fósforo , Neoplasias/patologia , Catálise
5.
Nanotechnology ; 33(22)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35172297

RESUMO

Two-dimensional (2D) materials including black phosphorus (BP) have been extensively investigated because of their exotic physical properties and potential applications in nanoelectronics and optoelectronics. Fabricating BP based devices is challenging because BP is extremely sensitive to the external environment, especially to the chemical contamination during the lithography process. The direct evaporation through shadow mask technique is a clean method for lithography-free electrode patterning of 2D materials. Herein, we employ the lithography-free evaporation method for the construction of BP based field-effect transistors and photodetectors and systematically compare their performances with those of BP counterparts fabricated by conventional lithography and transfer electrode methods. The results show that BP devices fabricated by direct evaporation method possess higher mobility, faster response time, and smaller hysteresis than those prepared by the latter two methods. This can be attributed to the clean interface between BP and evaporated-electrodes as well as the lower Schottky barrier height of 20.2 meV, which is given by the temperature-dependent electrical results. Furthermore, the BP photodetectors exhibit a broad-spectrum response and polarization sensitivity. Our work elucidates a universal, low-cost and high-efficiency method to fabricate BP devices for optoelectronic applications.

6.
J Nanobiotechnology ; 20(1): 522, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496422

RESUMO

Critical-sized bone defects are always difficult to treat, and they are associated with a significant burden of disease in clinical practice. In recent decades, due to the fast development of biomaterials and tissue engineering, many bioinspired materials have been developed to treat large bone defects. Due to the excellent osteoblastic ability of black phosphorous (BP), many BP-based biomaterials have been developed to treat bone defects. Therefore, there are abundant studies as well as a tremendous amount of research data. It is urgent to conduct evidence-based research to translate these research data and results into validated scientific evidence. Therefore, in our present study, a qualitative systematic review and a quantitative meta-analysis were performed. Eighteen studies were included in a systematic review, while twelve studies were included in the meta-analysis. Our results showed that the overall quality of experimental methods and reports of biomaterials studies was still low, which needs to be improved in future studies. Besides, we also proved the excellent osteoblastic ability of BP-based biomaterials. But we did not find a significant effect of near-infrared (NIR) laser in BP-based biomaterials for treating bone defects. However, the quality of the evidence presented by included studies was very low. Therefore, to accelerate the clinical translation of BP-based biomaterials, it is urgent to improve the quality of the study method and reporting in future animal studies. More evidence-based studies should be conducted to enhance the quality and clinical translation of BP-based biomaterials.


Assuntos
Materiais Biocompatíveis , Fósforo , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Fósforo/farmacologia , Regeneração Óssea , Engenharia Tecidual/métodos
7.
Angew Chem Int Ed Engl ; 60(23): 12891-12896, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33829645

RESUMO

Although a few semiconductors can directly absorb infrared light, their intrinsic properties like improper band-edge position and strong electron-hole interaction restrict further photocatalytic applications. Herein, we propose an exciton-mediated energy transfer strategy for realizing efficient infrared light response in heterostructures. Using black phosphorous/polymeric carbon nitride (BP/CN) heterojunction, CN could be indirectly excited by infrared light with the aid of nonradiatively exciton-based energy transfer from BP. At the same time, excitons are dissociated into free charge carriers at the interface of BP/CN heterojunction, followed by hole injection to BP and electron retainment in CN. As a result of these unique photoexcitation processes, BP/CN heterojunction exhibits promoted conversion rate and selectivity in amine-amine oxidative coupling reaction even under infrared light irradiation. This study opens a new way for the design of efficient infrared light activating photocatalysts.

8.
Mikrochim Acta ; 187(4): 229, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170465

RESUMO

Black phosphorus quantum dots (BP QDs) with small size are synthesized using an easy to operate thermal method. It was found that BP QDs possess oxidase-mimicking activity. They can catalyze the oxidation of the substrate 3,3',5,5'-tetramethylbenzidine to produce a blue-colored product even in the absence of hydrogen peroxide. Active oxygen species are proved to be involved in the reaction through the experiments of radical scavenging and electron spin resonance. Biothiols including reduced glutathione and cysteine inactivate the oxidase-mimicking activity of BP QDs, concomitant to the fading of the blue solution. This provides the  base for a colorimetric method for the determination of glutathione and cysteine. The decreased absorbance at 652 nm displays linear response to the concentrations of glutathione ranging from 0.1 to 5.0 µmol L-1, and cysteine from 0.1 to 10.0 µmol L-1. The detection limits are 0.02 µmol L-1 and 0.03 µmol L-1 for glutathione and cysteine, respectively. Successive determinations of 1.0 µmol L-1 glutathione and 5.0 µmol L-1 cysteine solution give relative standard deviations of 0.8% and 1.7% (n = 11), respectively. As a preliminary application, the practicability of the method was evaluated by the determination of glutathione in pharmaceutical preparations. This work not only discovers a useful oxidase mimics but also sets up a reliable platform based on BP QDs in colorimetric detection. Graphical abstract Schematic representation of colorimetric determination for biothiols through inactivating oxidase mimetic-like catalytic activity of black phosphorus quantum dots (BP QDs) on the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) with dissolved oxygen to produce its blue oxidized product (oxTMB).


Assuntos
Técnicas Biossensoriais , Colorimetria , Cisteína/análise , Glutationa/análise , Oxirredutases/química , Fósforo/química , Pontos Quânticos/química , Cisteína/metabolismo , Glutationa/metabolismo , Estrutura Molecular , Oxirredutases/metabolismo , Fósforo/metabolismo
9.
Small ; 15(47): e1903977, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31608586

RESUMO

Black phosphorous quantum dots (BPQDs) possess ambipolar charge transport, high mobility, and a tunable direct bandgap. Here, liquid-exfoliated BPQDs are used as interlayers to modify both the electron transport layer and hole transport layer in organic solar cells (OSCs). The incorporation of BPQDs is beneficial to the formation of a cascade band structure and electron/hole transfer and extraction. The power conversion efficiency of the BPQDs-incorporated OSC based on PTB7-Th:FOIC blend is enhanced from 11.8% to 13.1%. In addition, power conversion efficiency enhancement is also achieved for other nonfullerene and fullerene-based devices, demonstrating the universality of this interlayer methodology.

10.
Small ; 13(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27748996

RESUMO

Defects in bulk crystals can be classified into vacancies, interstitials, grain boundaries, stacking faults, dislocations, and so forth. In particular, the vacancy in semiconductors is a primary defect that governs electrical transport. Concentration of vacancies depends mainly on the growth conditions. Individual vacancies instead of aggregated vacancies are usually energetically more favorable at room temperature because of the entropy contribution. This phenomenon is not guaranteed in van der Waals 2D materials due to the reduced dimensionality (reduced entropy). Here, it is reported that the 1D connected/aggregated vacancies are energetically stable at room temperature. Transmission electron microscopy observations demonstrate the preferential alignment direction of the vacancy chains varies in different 2D crystals: MoS2 and WS2 prefer 〈2¯11〉 direction, while MoTe2 prefers 〈1¯10〉 direction. This difference is mainly caused by the different strain effect near the chalcogen vacancies. Black phosphorous also exhibits directional double-chain vacancies along 〈01〉 direction. Density functional theory calculations predict that the chain vacancies act as extended gap (conductive) states. The observation of the chain vacancies in 2D crystals directly explains the origin of n-type behavior in MoTe2 devices in recent experiments and offers new opportunities for electronic structure engineering with various 2D materials.

11.
Angew Chem Int Ed Engl ; 56(8): 2064-2068, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28079971

RESUMO

Efficient utilization of solar energy is a high-priority target and the search for suitable materials as photocatalysts that not only can harvest the broad wavelength of solar light, from UV to near-infrared (NIR) region, but also can achieve high and efficient solar-to-hydrogen conversion is one of the most challenging missions. Herein, using Au/La2 Ti2 O7 (BP-Au/LTO) sensitized with black phosphorus (BP), a broadband solar response photocatalyst was designed and used as efficient photocatalyst for H2 production. The optimum H2 production rates of BP-Au/LTO were about 0.74 and 0.30 mmol g-1 h-1 at wavelengths longer than 420 nm and 780 nm, respectively. The broad absorption of BP and plasmonic Au contribute to the enhanced photocatalytic activity in the visible and NIR light regions. Time-resolved diffuse reflectance spectroscopy revealed efficient interfacial electron transfer from excited BP and Au to LTO which is in accordance with the observed high photoactivities.

12.
Small ; 12(36): 5000-5007, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27199285

RESUMO

Se-doped black phosphorus (BP) crystal, in centimeter scale, is synthesized by a scalable gas-phase growth method under mild conditions. The Se-doped BP exhibits high quality with excellent electrical properties. The Se dope induces over 20-fold enhancement of responsivity (R) for BP-based 2D photodetectors, resulting in a high R and external quantum efficiency of 15.33 A W-1 and 2993%, respectively.

13.
Adv Sci (Weinh) ; : e2403182, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033543

RESUMO

Bulk black phosphorous (bP) exhibits excellent infrared (IR) optoelectronic properties, but most reported bP IR photodetectors are fabricated from single exfoliated flakes with lateral sizes of < 100 µm. Here, scalable thin films of bP suitable for IR photodetector arrays are realized through a tailored solution-deposition method. The properties of the bP film and their protective capping layers are optimized to fabricate bP IR photoconductors exhibiting specific detectivities up to 4.0 × 108 cm Hz1/2 W-1 with fast 30/60 µs rise/fall times under λ = 2.2 µm illumination. The scalability of the bP thin film fabrication is demonstrated by fabricating a linear array of 25 bP photodetectors and obtaining 25 × 25 pixel IR images at ≈203 ppi with good spatial fidelity. This research demonstrates a commercially viable method of fabricating scalable bP thin films for optoelectronic devices including room temperature-operable IR photodetector arrays.

14.
J Phys Condens Matter ; 36(39)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38906126

RESUMO

In this paper, we have systematically studied the electronic instability of pressured black phosphorous (BP) under strong magnetic field. We first present an effective model Hamiltonian for pressured BP near theLifshitzpoint. Then we show that when the magnetic field exceeds a critical value, the nodal-line semimetal (NLSM) state of BP with a small band overlap re-enters the semiconductive phase by re-opening a small gap. This results in a narrow-bandgap semiconductor with a partially flat valence band edge. Moreover, we demonstrate that above this critical magnetic field, two possible instabilities, i.e. charge density wave phase and excitonic insulator (EI) phase, are predicted as the ground state for high and low doping concentrations, respectively. By comparing our results with the experiment (Sunet al2018Sci. Bull.631539), we suggest that the field-induced instability observed experimentally corresponds to an EI. Furthermore, we propose that the semimetallic BP under pressure with small band overlaps may provide a good platform to study the magneto-exciton insulators. Our findings bring the first insight into the electronic instability of topological NLSM in the quantum limit.

15.
Foods ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832920

RESUMO

Patulin (PAT), a type of mycotoxin existing in foodstuffs, is harmful to food safety and human health. Thus, it is necessary to develop sensitive, selective and reliable analytical methods for PAT detection. In this study, a sensitive aptasensor based on a dual-signaling strategy was fabricated, in which a methylene-blue-labeled aptamer and ferrocene monocarboxylic acid in the electrolyte acted as a dual signal, for monitoring PAT. To improve the sensitivity of the aptasensor, an in-plane gold nanoparticles-black phosphorus heterostructure (AuNPs-BPNS) was synthesized for signal amplification. Due to the combination of AuNPs-BPNS nanocomposites and the dual-signaling strategy, the proposed aptasensor has a good analytical performance for PAT detection with the broad linear range of 0.1 nM-100.0 µM and the low detection limit of 0.043 nM. Moreover, the aptasensor was successfully employed for real sample detection, such as apple, pear and tomato. It is expected that BPNS-based nanomaterials hold great promise for developing novel aptasensors and may provide a sensing platform for food safety monitoring.

16.
Curr Med Chem ; 30(8): 935-952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35220933

RESUMO

Black phosphorus nanostructures (nano-BPs) mainly include BP nanosheets (BP NSs), BP quantum dots (BPQDs), and other nano-BPs-based particles at nanoscale. Firstly discovered in 2014, nano-BPs are one of the most popular nanomaterials. Different synthesis methods are discussed in short to understand the basic concepts and developments in synthesis. Exfoliated nano-BPs, i.e. nano-BPs possess high surface area, high photothermal conversion efficacy, excellent biocompatibility, high charge carrier mobility (~1000 cm-2V-1s-1), thermal conductivity of 86 Wm-1K-1; and these properties make it a highly potential candidate for fabrication of biosensing platform. These properties enable nano-BPs to be promising photothermal/drug delivery agents as well as in electrochemical data storage devices and sensing devices; and in super capacitors, photodetectors, photovoltaics and solar cells, LEDs, super-conductors, etc. Early diagnosis is very critical in the health sector scenarios. This review attempts to highlight the attempts made towards attaining stable BP, BP-aptamer conjugates for successful biosensing applications. BP-aptamer- based platforms are reviewed to highlight the significance of BP in detecting biological and physiological markers of cardiovascular diseases and cancer; to be useful in disease diagnosis and management.


Assuntos
Nanoestruturas , Neoplasias , Pontos Quânticos , Humanos , Fósforo/química , Nanoestruturas/química , Pontos Quânticos/química , Oligonucleotídeos , Biomarcadores
17.
J Hazard Mater ; 443(Pt B): 130326, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444054

RESUMO

Reasonable regulation of the micro-morphology of material can significantly enhance the related performance. Herein, bismuth tungstate (Bi2WO6, simplified as BWO) porous hollow spheres with flower-like surface were prepared successfully, and this unique morphology endowed BWO with improved photocatalytic performance by reflecting and absorbing the light multiple times inside the cavity. To inhibit the rapid recombination of photogenerated e--h+ pairs within BWO itself, black phosphorous quantum dots (BPQDs) were anchored onto the nanosheets of BWO sphere closely by a facile self-assembly process, which will not shade the pores of BWO owing to the small size of BPQDs, but the BP nanosheets have the chance to do that. The band gap of BPQDs expanded much after exfoliation due to the quantum confinement effects, which matched the energy band of BWO well to form S-scheme heterojunction, achieving more efficient separation of photogenerated charges. As a result, the BPQDs/BWO exhibited attractive photocatalytic performance in the degradation of amoxicillin (AMX) and other antibiotics. Besides, the operation conditions were optimized, specifically, 94.5 % of AMX (20 mg/L, 200 mL) can be removed in 60 min when 50 mg of 2BPQDs/BWO was used as catalyst with solution pH = 11. Moreover, a possible degradation pathway of AMX was proposed based on the detected intermediates.


Assuntos
Amoxicilina , Pontos Quânticos , Fósforo , Porosidade , Luz
18.
Nanomaterials (Basel) ; 13(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299619

RESUMO

Terahertz frequency has promising applications in communication, security scanning, medical imaging, and industry. THz absorbers are one of the required components for future THz applications. However, nowadays, obtaining a high absorption, simple structure, and ultrathin absorber is a challenge. In this work, we present a thin THz absorber that can be easily tuned through the whole THz range (0.1-10 THz) by applying a low gate voltage (<1 V). The structure is based on cheap and abundant materials (MoS2/graphene). Nanoribbons of MoS2/graphene heterostructure are laid over a SiO2 substrate with an applied vertical gate voltage. The computational model shows that we can achieve an absorptance of approximately 50% of the incident light. The absorptance frequency can be tuned through varying the structure and the substrate dimensions, where the nanoribbon width can be varied approximately from 90 nm to 300 nm, while still covering the whole THz range. The structure performance is not affected by high temperatures (500 K and above), so it is thermally stable. The proposed structure represents a low-voltage, easily tunable, low-cost, and small-size THz absorber that can be used in imaging and detection. It is an alternative to expensive THz metamaterial-based absorbers.

19.
Talanta ; 258: 124433, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36996585

RESUMO

Norovirus (NoV) is a major foodborne pathogen responsible for acute gastroenteritis epidemics, and establishing a robust detection method for the timely identification and monitoring of NoV contamination is of great significance. In this study, a peptide-target-aptamer sandwich electrochemical biosensor for NoV was fabricated using Au@BP@Ti3C2-MXene and magnetic Au@ZnFe2O4@COF nanocomposites. The response currents of the electrochemical biosensor were proportional to the NoV concentrations ranging from 0.01-105 copies/mL with a detection limit (LOD) of 0.003 copies/mL (S/N = 3). To our best knowledge, this LOD was the lowest among published assays to date, due to the specific recognition of the affinity peptide and aptamer for NoV and the outstanding catalytic activity of nanomaterials. Furthermore, the biosensor showed excellent selectivity, anti-interference performance, and satisfactory stability. The NoV concentrations in simulative food matrixes were successfully detected using the constructed biosensor. Meanwhile, NoV in stool samples was also successfully quantified without complex pretreatment. The designed biosensor had the potential to detect NoV (even at a low level) in foods, clinical samples, and environmental samples, providing a new method for NoV detection in food safety and diagnosing foodborne pathogens.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Nanocompostos , Norovirus , Peptídeos/química , Oligonucleotídeos/química , Limite de Detecção , Titânio/química , Fósforo/química
20.
Front Bioeng Biotechnol ; 11: 1117090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911205

RESUMO

Features of black phosphorous (BP) nano sheets such as enhancing mineralization and reducing cytotoxicity in bone regeneration field have been reported. Thermo-responsive FHE hydrogel (mainly composed of oxidized hyaluronic acid (OHA), poly-ε-L-lysine (ε-EPL) and F127) also showed a desired outcome in skin regeneration due to its stability and antibacterial benefits. This study investigated the application of BP-FHE hydrogel in anterior cruciate ligament reconstruction (ACLR) both in in vitro and in vivo, and addressed its effects on tendon and bone healing. This BP-FHE hydrogel is expected to bring the benefits of both components (thermo-sensitivity, induced osteogenesis and easy delivery) to optimize the clinical application of ACLR and enhance the recovery. Our in vitro results confirmed the potential role of BP-FHE via significantly increased rBMSC attachment, proliferation and osteogenic differentiation with ARS and PCR analysis. Moreover, In vivo results indicated that BP-FHE hydrogels can successfully optimize the recovery of ACLR through enhancing osteogenesis and improving the integration of tendon and bone interface. Further results of Biomechanical testing and Micro-CT analysis [bone tunnel area (mm2) and bone volume/total volume (%)] demonstrated that BP can indeed accelerate bone ingrowth. Additionally, histological staining (H&E, Masson and Safranin O/fast green) and immunohistochemical analysis (COL I, COL III and BMP-2) strongly supported the ability of BP to promote tendon-bone healing after ACLR in murine animal models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA