Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 96(11): 3779-86, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26676892

RESUMO

BACKGROUND: A plastic composite support (PCS) bioreactor was implemented to evaluate the effects on isoflavone deglycosylation in black soymilk fermented by Rhizopus oligosporus NTU 5. RESULTS: Evaluation for the optimal PCS for mycelia immobilisation was conducted, which led to the significant results that the most mycelium weight (0.237 g per PCS, P < 0.05) is held by an S-type PCS; therefore, it was selected for black soymilk fermentation. It was found that the PCS fermentation system without pH control exhibits better efficiency of isoflavone bioconversion (daidzin to daidzein, and genistin to genistein) than the one with pH control at pH 6.5. As for the long-run fermentation, those without pH control indeed accelerate the isoflavone bioconversion by continuously releasing ß-glucosidase into soymilk. Deglycosylation can be completed in 8 to 24 h and sustained for at least 34 days as 26 batches. The non-pH-control fermentation system also exhibits the highest total phenolic content (ranged from 0.147 to 0.340 mg GAE mL(-1) sample) when compared to the pH-controlled and suspended ones. Meanwhile, the black soymilk from the 22nd batch with 8 h fermentation demonstrated the highest DPPH radical scavenging effect (54.7%). CONCLUSION: A repeated-batch PCS fermentation system was established to accelerate the deglycosylation rate of isoflavone in black soymilk. © 2015 Society of Chemical Industry.


Assuntos
Fermentação , Manipulação de Alimentos/métodos , Isoflavonas/metabolismo , Rhizopus/metabolismo , Leite de Soja/metabolismo , Antioxidantes/farmacologia , Compostos de Bifenilo/metabolismo , Genisteína/metabolismo , Glicosídeos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Picratos/metabolismo , beta-Glucosidase/metabolismo
2.
Foods ; 10(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810370

RESUMO

Elaeocarpus serratus L. leaves (EL) containing phenolic compounds and flavonoids, including myricitrin with pharmacological properties, could be valorized as nutritional additive in foods. In this study, the semi-solid-state fermentation of EL and black soymilk (BS) by Lactobacillus plantarum BCRC 10357 was investigated. Without adding EL in MRS medium, the ß-glucosidase activity of L. plantarum quickly reduced to 2.33 ± 0.15 U/mL in 36 h of fermentation; by using 3% EL, the stability period of ß-glucosidase activity was prolonged as 12.94 ± 0.69 U/mL in 12 h to 13.71 ± 0.94 in 36 h, showing positive response of the bacteria encountering EL. Using L. plantarum to ferment BS with 3% EL, the ß-glucosidase activity increased to 23.78 ± 1.34 U/mL in 24 h, and in the fermented product extract (FPE), the content of myricitrin (2297.06 µg/g-FPE) and isoflavone aglycones (daidzein and genistein, 474.47 µg/g-FPE) at 48 h of fermentation were 1.61-fold and 1.95-fold of that before fermentation (at 0 h), respectively. Total flavonoid content, myricitrin, and ferric reducing antioxidant power in FPE using BS and EL were higher than that using EL alone. This study developed the potential fermented product of black soymilk using EL as a nutritional supplement with probiotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA