Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407182

RESUMO

In this work, we developed an eco-friendly and facile microvia filling method by using printing and sintering of Cu-Ag core-shell nano-microparticles (Cu@Ag NMPs). Through a chemical reduction reaction in a modified silver ammonia solution with L-His complexing agent, Cu@Ag NMPs with compact and uniform Ag shells, excellent sphericity and oxidation resistance were synthesized. The as-synthesized Cu@Ag NMPs show superior microvia filling properties to Cu nanoparticles (NPs), Ag NPs, and Cu NMPs. By developing a dense refill method, the porosity of the sintered particles within the microvias was significantly reduced from ~30% to ~10%, and the electrical conductivity is increased about twenty-fold. Combing the Cu@Ag NMPs and the dense refill method, the microvias could obtain resistivities as low as 7.0 and 6.3 µΩ·cm under the sintering temperatures of 220 °C and 260 °C, respectively. The material and method in this study possess great potentials in advanced electronic applications.

2.
Materials (Basel) ; 14(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375391

RESUMO

Here, in a certain high density interconnect (HDI) printed circuit board, the effect of copper sulfate and sulfuric acid on the filling effect of a blind hole with a certain diameter and depth was investigated by making a blind hole using a CO2 laser drilling machine, filling the blind hole via electroplating by simulating the electroplating line in a Halin cell, and observing the cross-section of a micro blind hole after polishing using metallographic microscope, as well as the effect of hole filling, are evaluated. The results show that, under the conditions of a certain plating solution formula and electroplating parameters (current density and electroplating time), the sag degree decreases with the increase in the copper sulfate concentration. When the concentration of copper sulfate increases from 210 g/L to 225 g/L, the filling effect is good and the sag degree is about 0. However, with the increase in sulfuric acid concentration, the sag increases gradually. When the sulfuric acid concentration is 25-35 g/L, both the sag and copper coating thickness are in a small range. Under appropriate electroplating conditions, a better blind hole filling effect can be obtained. The volume of blind hole has a certain effect on the diffusion and exchange of copper sulfate and sulfuric acid, as well as on the concentration distribution of additives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA