RESUMO
It has always been a major issue for a hospital to acquire real-time information about a patient in emergency situations. Because of this, this research presents a novel high-compression-ratio and real-time-process image compression very-large-scale integration (VLSI) design for image sensors in the Internet of Things (IoT). The design consists of a YEF transform, color sampling, block truncation coding (BTC), threshold optimization, sub-sampling, prediction, quantization, and Golomb-Rice coding. By using machine learning, different BTC parameters are trained to achieve the optimal solution given the parameters. Two optimal reconstruction values and bitmaps for each 4 × 4 block are achieved. An image is divided into 4 × 4 blocks by BTC for numerical conversion and removing inter-pixel redundancy. The sub-sampling, prediction, and quantization steps are performed to reduce redundant information. Finally, the value with a high probability will be coded using Golomb-Rice coding. The proposed algorithm has a higher compression ratio than traditional BTC-based image compression algorithms. Moreover, this research also proposes a real-time image compression chip design based on low-complexity and pipelined architecture by using TSMC 0.18 µm CMOS technology. The operating frequency of the chip can achieve 100 MHz. The core area and the number of logic gates are 598,880 µm2 and 56.3 K, respectively. In addition, this design achieves 50 frames per second, which is suitable for real-time CMOS image sensor compression.
RESUMO
This study investigates combining the property of human vision system and a 2-phase data hiding strategy to improve the visual quality of data-embedded compressed images. The visual Internet of Things (IoT) is indispensable in smart cities, where different sources of visual data are collected for more efficient management. With the transmission through the public network, security issue becomes critical. Moreover, for the sake of increasing transmission efficiency, image compression is widely used. In order to respond to both needs, we present a novel data hiding scheme for image compression with Absolute Moment Block Truncation Coding (AMBTC). Embedding secure data in digital images has broad security uses, e.g., image authentication, prevention of forgery attacks, and intellectual property protection. The proposed method embeds data into an AMBTC block by two phases. In the intra-block embedding phase, a hidden function is proposed, where the five AMBTC parameters are extracted and manipulated to embed the secret data. In the inter-block embedding phase, the relevance of high mean and low mean values between adjacent blocks are exploited to embed additional secret data in a reversible way. Between these two embedding phases, a halftoning scheme called direct binary search is integrated to efficiently improve the image quality without changing the fixed parameters. The modulo operator is used for data extraction. The advantages of this study contain two aspects. First, data hiding is an essential area of research for increasing the IoT security. Second, hiding in compressed images instead of original images can improve the network transmission efficiency. The experimental results demonstrate the effectiveness and superiority of the proposed method.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Segurança Computacional , Humanos , InternetRESUMO
This paper presents a simple technique for improving the quality of the halftoning-based block truncation coding (H-BTC) decoded image. The H-BTC is an image compression technique inspired from typical block truncation coding (BTC). The H-BTC yields a better decoded image compared to that of the classical BTC scheme under human visual observation. However, the impulsive noise commonly appears on the H-BTC decoded image. It induces an unpleasant feeling while one observes this decoded image. Thus, the proposed method presented in this paper aims to suppress the occurring impulsive noise by exploiting a deep learning approach. This process can be regarded as an ill-posed inverse imaging problem, in which the solution candidates of a given problem can be extremely huge and undetermined. The proposed method utilizes the convolutional neural networks (CNN) and residual learning frameworks to solve the aforementioned problem. These frameworks effectively reduce the impulsive noise occurrence, and at the same time, it improves the quality of H-BTC decoded images. The experimental results show the effectiveness of the proposed method in terms of subjective and objective measurements.
RESUMO
Secret sharing based on Absolute Moment Block Truncation Coding (AMBTC) has been widely studied. However, the management of stego images is inconvenient as they seem indistinguishable. Moreover, there exists a problem of pixel expansion, which requires more storage space and higher transmission bandwidth. To conveniently manage the stego images, we use multiple cover images to make the stego images seem to be visually different from with each other. Futhermore, the stego images are different, which will not cause the attacker's suspicion and increase the security of the scheme. And traditional Visual Secret Sharing (VSS) is fused to eliminate pixel expansion. After images are compressed by AMBTC algorithm, the quantization levels and the bitmap corresponding to each block are obtained. At the same time, when the threshold is (k,k), bitmaps can be recovered losslessly, and the slight degradation of image quality is only caused by the compression itself. When the threshold is another value, the recovered image and the cover images can be recovered with satisfactory image quality. The experimental results and analyses show the effectiveness and advantages of our scheme.