Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(18): 7743-7757, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652822

RESUMO

Permeabilities of various trace elements (TEs) through the blood-follicle barrier (BFB) play an important role in oocyte development. However, it has not been comprehensively described as well as its involved biological pathways. Our study aimed to construct a blood-follicle distribution model of the concerned TEs and explore their related biological pathways. We finally included a total of 168 women from a cohort of in vitro fertilization-embryo transfer conducted in two reproductive centers in Beijing City and Shandong Province, China. The concentrations of 35 TEs in both serum and follicular fluid (FF) samples from the 168 women were measured, as well as the multiomics features of the metabolome, lipidome, and proteome in both plasma and FF samples. Multiomics features associated with the transfer efficiencies of TEs through the BFB were selected by using an elastic net model and further utilized for pathway analysis. Various machine learning (ML) models were built to predict the concentrations of TEs in FF. Overall, there are 21 TEs that exhibited three types of consistent BFB distribution characteristics between Beijing and Shandong centers. Among them, the concentrations of arsenic, manganese, nickel, tin, and bismuth in FF were higher than those in the serum with transfer efficiencies of 1.19-4.38, while a reverse trend was observed for the 15 TEs with transfer efficiencies of 0.076-0.905, e.g., mercury, germanium, selenium, antimony, and titanium. Lastly, cadmium was evenly distributed in the two compartments with transfer efficiencies of 0.998-1.056. Multiomics analysis showed that the enrichment of TEs was associated with the synthesis and action of steroid hormones and the glucose metabolism. Random forest model can provide the most accurate predictions of the concentrations of TEs in FF among the concerned ML models. In conclusion, the selective permeability through the BFB for various TEs may be significantly regulated by the steroid hormones and the glucose metabolism. Also, the concentrations of some TEs in FF can be well predicted by their serum levels with a random forest model.


Assuntos
Aprendizado de Máquina , Oligoelementos , Humanos , Oligoelementos/metabolismo , Feminino , Líquido Folicular/metabolismo , Líquido Folicular/química , China , Multiômica
2.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499156

RESUMO

Serotonin (5-HT) plays an essential role in regulating female reproductive function in many animals. 5-HT accumulates in the mammalian ovary with the involvement of membrane serotonin transporter SERT and is functionally active in the oocytes of growing follicles, but shows almost no activity in follicular cells. In this study, we clarified the interplay between 5-HT membrane transport and its degradation by monoamine oxidase (MAO) in the mammalian ovary. Using pharmacologic agents and immunohistochemical staining of the cryosections of ovaries after serotonin administration in vitro, we demonstrated the activity of transport and degradation systems in ovarian follicles. The MAO inhibitor pargyline increased serotonin accumulation in the granulosa cells of growing follicles, indicating the activity of both serotonin uptake and degradation by MAO in these cells. The activity of MAO and the specificity of the membrane transport of serotonin was confirmed in primary granulosa cell culture treated with pargyline and fluoxetine. Moreover, the accumulation of serotonin is more effective in the denuded oocytes and occurs at lower concentrations than in the oocytes within the follicles. This confirms that the activity of SERT and MAO in the granulosa cells surrounding the oocytes impedes the accumulation of serotonin in the oocytes and forms a functional barrier to serotonin.


Assuntos
Células da Granulosa , Serotonina , Animais , Camundongos , Feminino , Serotonina/metabolismo , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Monoaminoxidase/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Pargilina/metabolismo , Pargilina/farmacologia , Mamíferos/metabolismo
3.
PNAS Nexus ; 3(9): pgae375, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39262851

RESUMO

Current infertility treatment strategies focus on mature gametes, leaving a significant proportion of cases with gamete progenitors that stopped complete differentiation. On the other hand, recent advancements in next-generation sequencing have identified many candidate genes that may promote maturation of germ cells. Although gene therapy has shown success in mice, concerns about the integration of DNA vectors into oocytes hinder clinical applications. Here, we present the restoration of fertility in female mice through Sendai virus (SeV)-mediated RNA delivery. Ovaries lacking Kitl expression exhibit only primordial follicles due to impaired signaling to oocytes expressing the KIT tyrosine kinase. Despite SeVs being immunogenic and larger than the blood-follicle barrier, the administration of Kitl-expressing SeVs reinitiated oogenesis in genetically infertile mice that have only primordial follicles, resulting in the birth of normal offspring through natural mating. This virus also effectively addressed iatrogenic infertility induced by busulfan, a widely used cancer chemotherapy agent. Offspring born through SeV administration and natural mating displayed normal genomic imprinting patterns and fertility. Since SeVs pose no genotoxicity risk, the successful restoration of fertility by SeVs represents a promising approach for treating congenital infertility with somatic cell defects and protecting fertility of cancer patients who may become infertile due to loss of oocytes during cancer therapy.

4.
Environ Pollut ; 304: 119147, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35314206

RESUMO

The blood-follicle barrier (BFB) between the blood and follicular fluid (FF) can maintain the microenvironment balance of oocyte. Boron, an exogenous environmental trace element, has been found to possibly play an important role in oocyte maturation. This study aimed to examine the distribution characteristics of boron across the BFB and find the potential effect of boron on FF microenvironment. We analyzed the concentration of boron in paired FF and serum collected from 168 women undergoing in vitro fertilization and embryo transfer in Beijing City and Shandong Province, China. To explore the potential health impact of boron enrichment in oocyte maturation, a global proteomics analysis was conducted to tentatively correlate the protein levels with the boron enrichment. Interestingly, the results showed that the concentration of boron in FF (34.5 ng/mL) was significantly higher than that in serum (22.0 ng/mL), with a median concentration ratio of 1.52. Likewise, the concentrations of boron in FF and serum were positively correlated (r = 0.446), suggesting that boron concentration in serum can represent its concentration in follicular fluid to a large extent.. This is the first time to observe the enrichment of boron in the FF to our knowledge. It is interesting to observe a total of 13 proteins, which mainly belong to immunoglobulin class, were positively correlated with boron concentration in FF. We concluded that boron, as one environmental trace element, was enriched in FF from blood validated by two area in north china, which may be involved in an increased level of immune processes of immunoglobulins.


Assuntos
Líquido Folicular , Oligoelementos , Boro/metabolismo , Feminino , Fertilização in vitro/métodos , Humanos , Imunidade , Masculino , Oócitos/metabolismo , Oligoelementos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA