RESUMO
BACKGROUND: Ammonia is a normal constituent of body fluids and is found mainly through the formation of urea in the liver. Blood levels of ammonia must remain low as even slightly elevated concentrations (hyperammonemia) are toxic to the central nervous system. AIM: To examine the relationship between the incidence of non-hepatic hype-rammonemia (NHH) and the prognosis of patients who were admitted to the intensive care unit (ICU). METHODS: This is a prospective, observational and single-center study. A total of 364 patients who were admitted to the ICU from November 2019 to February 2020 were initially enrolled. Changes in the levels of blood ammonia at the time of ICU admission and after ICU admission were continuously monitored. In addition, factors influencing the prognosis of NHH patients were analyzed. RESULTS: A total of 204 patients who met the inclusion criteria were enrolled in this study, including 155 NHH patients and 44 severe-NHH patients. The incidence of NHH and severe-NHH was 75.98% and 21.57%, respectively. Patients with severe-NHH exhibited longer length of ICU stay and higher Acute Physiologic Assessment and Chronic Health Evaluation and Sequential Organ Failure Assessment scores compared to those with mild-NHH and non-NHH. Glasgow Coma Scale scores of patients with severe-NHH were than those of non-NHH patients. In addition, the mean and initial levels of ammonia in the blood might be helpful in predicting the prognosis of NHH. CONCLUSION: High blood ammonia level is frequent among NHH patients admitted to the ICU, which is related to the clinical characteristics of patients. Furthermore, the level of blood ammonia may be helpful for prognosis prediction.
Assuntos
Hiperamonemia , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/epidemiologia , Incidência , Unidades de Terapia Intensiva , Prognóstico , Estudos ProspectivosRESUMO
Alzheimer’s disease (AD), characterized by cognitive decline and devastating neurodegeneration, is the most common age-related dementia. Since AD is a typical example of a complex disease that is affected by various genetic and environmental factors, various factors could be involved in preventing and/or treating AD. Extracellular accumulation of beta-amyloid peptide (Aβ) and intracellular accumulation of tau undeniably play essential roles in the etiology of AD. However, interestingly enough, medications targeting Aβ or tau all failed and the only clinically efficient medications for AD are drugs targeting the cholinergic pathway. Also, a very intriguing discovery in AD is that the Mediterranean diet (MeDi), containing an unusually large quantity of Lactobacilli, is very effective in preventing AD. Based on recently emerging findings, it is our opinion that the reduction of blood ammonia levels by Lactobacilli in MeDi is the therapeutic agent of MeDi for AD. The recent evidence of Lactobacilli lowering blood ammonia level not only provides a link between AD and MeDi but also provides a foundation of pharmabiotics for hyperammonemia as well as various neurological diseases.