Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.968
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(12): 3120-3140.e29, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714197

RESUMO

Non-hematopoietic cells are essential contributors to hematopoiesis. However, heterogeneity and spatial organization of these cells in human bone marrow remain largely uncharacterized. We used single-cell RNA sequencing (scRNA-seq) to profile 29,325 non-hematopoietic cells and discovered nine transcriptionally distinct subtypes. We simultaneously profiled 53,417 hematopoietic cells and predicted their interactions with non-hematopoietic subsets. We employed co-detection by indexing (CODEX) to spatially profile over 1.2 million cells. We integrated scRNA-seq and CODEX data to link predicted cellular signaling with spatial proximity. Our analysis revealed a hyperoxygenated arterio-endosteal neighborhood for early myelopoiesis, and an adipocytic localization for early hematopoietic stem and progenitor cells (HSPCs). We used our CODEX atlas to annotate new images and uncovered mesenchymal stromal cell (MSC) expansion and spatial neighborhoods co-enriched for leukemic blasts and MSCs in acute myeloid leukemia (AML) patient samples. This spatially resolved, multiomic atlas of human bone marrow provides a reference for investigation of cellular interactions that drive hematopoiesis.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Proteômica , Análise de Célula Única , Transcriptoma , Humanos , Análise de Célula Única/métodos , Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Proteômica/métodos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Hematopoese , Nicho de Células-Tronco , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia
2.
Cell ; 187(11): 2801-2816.e17, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657601

RESUMO

The niche is typically considered as a pre-established structure sustaining stem cells. Therefore, the regulation of its formation remains largely unexplored. Whether distinct molecular mechanisms control the establishment versus maintenance of a stem cell niche is unknown. To address this, we compared perinatal and adult bone marrow mesenchymal stromal cells (MSCs), a key component of the hematopoietic stem cell (HSC) niche. MSCs exhibited enrichment in genes mediating m6A mRNA methylation at the perinatal stage and downregulated the expression of Mettl3, the m6A methyltransferase, shortly after birth. Deletion of Mettl3 from developing MSCs but not osteoblasts led to excessive osteogenic differentiation and a severe HSC niche formation defect, which was significantly rescued by deletion of Klf2, an m6A target. In contrast, deletion of Mettl3 from MSCs postnatally did not affect HSC niche. Stem cell niche generation and maintenance thus depend on divergent molecular mechanisms, which may be exploited for regenerative medicine.


Assuntos
Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Metiltransferases , Camundongos Endogâmicos C57BL , Nicho de Células-Tronco , Animais , Camundongos , Adenosina/metabolismo , Adenosina/análogos & derivados , Diferenciação Celular , Epigênese Genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Fatores de Transcrição Kruppel-Like , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Metiltransferases/metabolismo , Metiltransferases/genética , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteogênese , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Transcriptoma/genética , Humanos
3.
Cell ; 187(14): 3690-3711.e19, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838669

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) arises from aging-associated acquired mutations in hematopoietic progenitors, which display clonal expansion and produce phenotypically altered leukocytes. We associated CHIP-DNMT3A mutations with a higher prevalence of periodontitis and gingival inflammation among 4,946 community-dwelling adults. To model DNMT3A-driven CHIP, we used mice with the heterozygous loss-of-function mutation R878H, equivalent to the human hotspot mutation R882H. Partial transplantation with Dnmt3aR878H/+ bone marrow (BM) cells resulted in clonal expansion of mutant cells into both myeloid and lymphoid lineages and an elevated abundance of osteoclast precursors in the BM and osteoclastogenic macrophages in the periphery. DNMT3A-driven clonal hematopoiesis in recipient mice promoted naturally occurring periodontitis and aggravated experimentally induced periodontitis and arthritis, associated with enhanced osteoclastogenesis, IL-17-dependent inflammation and neutrophil responses, and impaired regulatory T cell immunosuppressive activity. DNMT3A-driven clonal hematopoiesis and, subsequently, periodontitis were suppressed by rapamycin treatment. DNMT3A-driven CHIP represents a treatable state of maladaptive hematopoiesis promoting inflammatory bone loss.


Assuntos
Hematopoiese Clonal , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Periodontite , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Camundongos , Hematopoiese Clonal/genética , Humanos , Periodontite/genética , Periodontite/patologia , Mutação , Masculino , Feminino , Inflamação/genética , Inflamação/patologia , Osteoclastos/metabolismo , Camundongos Endogâmicos C57BL , Adulto , Interleucina-17/metabolismo , Interleucina-17/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Hematopoese/genética , Osteogênese/genética , Células-Tronco Hematopoéticas/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Pessoa de Meia-Idade
4.
Annu Rev Immunol ; 34: 449-78, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27168243

RESUMO

Hematopoietic stem cells (HSCs) and downstream progenitors have long been studied based on phenotype, cell purification, proliferation, and transplantation into myeloablated recipients. These experiments, complemented by data on expression profiles, mouse mutants, and humans with hematopoietic defects, are the foundation for the current hematopoietic differentiation tree. However, there are fundamental gaps in our knowledge of the quantitative and qualitative operation of the HSC/progenitor system under physiological and pathological conditions in vivo. The hallmarks of HSCs, self-renewal and multipotency, are observed in in vitro assays and cell transplantation experiments; however, the extent to which these features occur naturally in HSCs and progenitors remains uncertain. We focus here on work that strives to address these unresolved questions, with emphasis on fate mapping and modeling of the hematopoietic flow from stem cells toward myeloid and lymphoid lineages during development and adult life.


Assuntos
Envelhecimento/imunologia , Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Células Progenitoras Linfoides/fisiologia , Animais , Linhagem da Célula , Autorrenovação Celular , Humanos , Camundongos , Modelos Teóricos , Transcriptoma
5.
Cell ; 185(13): 2234-2247.e17, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35709748

RESUMO

Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system (CNS). Bone marrow hematopoietic stem and progenitor cells (HSPCs) rapidly sense immune activation, yet their potential interplay with autoreactive T cells in MS is unknown. Here, we report that bone marrow HSPCs are skewed toward myeloid lineage concomitant with the clonal expansion of T cells in MS patients. Lineage tracing in experimental autoimmune encephalomyelitis, a mouse model of MS, reveals remarkable bone marrow myelopoiesis with an augmented output of neutrophils and Ly6Chigh monocytes that invade the CNS. We found that myelin-reactive T cells preferentially migrate into the bone marrow compartment in a CXCR4-dependent manner. This aberrant bone marrow myelopoiesis involves the CCL5-CCR5 axis and augments CNS inflammation and demyelination. Our study suggests that targeting the bone marrow niche presents an avenue to treat MS and other autoimmune disorders.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Medula Óssea , Hematopoese , Humanos , Camundongos , Camundongos Endogâmicos C57BL
6.
Cell ; 185(10): 1709-1727.e18, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483374

RESUMO

Bone marrow (BM)-mediated trained innate immunity (TII) is a state of heightened immune responsiveness of hematopoietic stem and progenitor cells (HSPC) and their myeloid progeny. We show here that maladaptive BM-mediated TII underlies inflammatory comorbidities, as exemplified by the periodontitis-arthritis axis. Experimental-periodontitis-related systemic inflammation in mice induced epigenetic rewiring of HSPC and led to sustained enhancement of production of myeloid cells with increased inflammatory preparedness. The periodontitis-induced trained phenotype was transmissible by BM transplantation to naive recipients, which exhibited increased inflammatory responsiveness and disease severity when subjected to inflammatory arthritis. IL-1 signaling in HSPC was essential for their maladaptive training by periodontitis. Therefore, maladaptive innate immune training of myelopoiesis underlies inflammatory comorbidities and may be pharmacologically targeted to treat them via a holistic approach.


Assuntos
Artrite , Periodontite , Animais , Células-Tronco Hematopoéticas , Imunidade Inata , Camundongos , Mielopoese
7.
Cell ; 183(5): 1234-1248.e25, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113353

RESUMO

Brain metastasis (br-met) develops in an immunologically unique br-met niche. Central nervous system-native myeloid cells (CNS-myeloids) and bone-marrow-derived myeloid cells (BMDMs) cooperatively regulate brain immunity. The phenotypic heterogeneity and specific roles of these myeloid subsets in shaping the br-met niche to regulate br-met outgrowth have not been fully revealed. Applying multimodal single-cell analyses, we elucidated a heterogeneous but spatially defined CNS-myeloid response during br-met outgrowth. We found Ccr2+ BMDMs minimally influenced br-met while CNS-myeloid promoted br-met outgrowth. Additionally, br-met-associated CNS-myeloid exhibited downregulation of Cx3cr1. Cx3cr1 knockout in CNS-myeloid increased br-met incidence, leading to an enriched interferon response signature and Cxcl10 upregulation. Significantly, neutralization of Cxcl10 reduced br-met, while rCxcl10 increased br-met and recruited VISTAHi PD-L1+ CNS-myeloid to br-met lesions. Inhibiting VISTA- and PD-L1-signaling relieved immune suppression and reduced br-met burden. Our results demonstrate that loss of Cx3cr1 in CNS-myeloid triggers a Cxcl10-mediated vicious cycle, cultivating a br-met-promoting, immune-suppressive niche.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/secundário , Quimiocina CXCL10/metabolismo , Terapia de Imunossupressão , Células Mieloides/metabolismo , Animais , Células da Medula Óssea/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Receptor 1 de Quimiocina CX3C/metabolismo , Sistema Nervoso Central/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Interferons/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Testes de Neutralização , Fenótipo , Linfócitos T/imunologia , Transcriptoma/genética
8.
Cell ; 177(7): 1915-1932.e16, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31130381

RESUMO

Stroma is a poorly defined non-parenchymal component of virtually every organ with key roles in organ development, homeostasis, and repair. Studies of the bone marrow stroma have defined individual populations in the stem cell niche regulating hematopoietic regeneration and capable of initiating leukemia. Here, we use single-cell RNA sequencing (scRNA-seq) to define a cellular taxonomy of the mouse bone marrow stroma and its perturbation by malignancy. We identified seventeen stromal subsets expressing distinct hematopoietic regulatory genes spanning new fibroblastic and osteoblastic subpopulations including distinct osteoblast differentiation trajectories. Emerging acute myeloid leukemia impaired mesenchymal osteogenic differentiation and reduced regulatory molecules necessary for normal hematopoiesis. These data suggest that tissue stroma responds to malignant cells by disadvantaging normal parenchymal cells. Our taxonomy of the stromal compartment provides a comprehensive bone marrow cell census and experimental support for cancer cell crosstalk with specific stromal elements to impair normal tissue function and thereby enable emergent cancer.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Homeostase , Leucemia Mieloide Aguda/metabolismo , Osteoblastos/metabolismo , Osteogênese , Microambiente Tumoral , Animais , Células da Medula Óssea/patologia , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Osteoblastos/patologia , Células Estromais/metabolismo , Células Estromais/patologia
9.
Cell ; 178(5): 1072-1087.e14, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442401

RESUMO

Nutritional status potentially influences immune responses; however, how nutritional signals regulate cellular dynamics and functionality remains obscure. Herein, we report that temporary fasting drastically reduces the number of lymphocytes by ∼50% in Peyer's patches (PPs), the inductive site of the gut immune response. Subsequent refeeding seemingly restored the number of lymphocytes, but whose cellular composition was conspicuously altered. A large portion of germinal center and IgA+ B cells were lost via apoptosis during fasting. Meanwhile, naive B cells migrated from PPs to the bone marrow during fasting and then back to PPs during refeeding when stromal cells sensed nutritional signals and upregulated CXCL13 expression to recruit naive B cells. Furthermore, temporal fasting before oral immunization with ovalbumin abolished the induction of antigen-specific IgA, failed to induce oral tolerance, and eventually exacerbated food antigen-induced diarrhea. Thus, nutritional signals are critical in maintaining gut immune homeostasis.


Assuntos
Linfócitos B/fisiologia , Imunidade nas Mucosas , Animais , Antígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Medula Óssea/imunologia , Medula Óssea/metabolismo , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Jejum , Regulação da Expressão Gênica , Glicólise , Imunoglobulina A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estado Nutricional , Ovalbumina/imunologia , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/patologia , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Transdução de Sinais , Células Estromais/citologia , Células Estromais/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
Immunity ; 57(9): 2108-2121.e6, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39089257

RESUMO

Unlike sessile macrophages that occupy specialized tissue niches, non-classical monocytes (NCMs)-circulating phagocytes that patrol and cleanse the luminal surface of the vascular tree-are characterized by constant movement. Here, we examined the nature of the NCM's nurturing niche. Expression of the growth factor CSF1 on endothelial cells was required for survival of NCMs in the bloodstream. Lack of endothelial-derived CSF1 did not affect blood CSF1 concentration, suggesting that NCMs rely on scavenging CSF1 present on endothelial cells. Deletion of the transmembrane chemokine and adhesion factor CX3CL1 on endothelial cells impaired NCM survival. Mechanistically, endothelial-derived CX3CL1 and integrin subunit alpha L (ITGAL) facilitated the uptake of CSF1 by NCMs. CSF1 was produced by all tissular endothelial cells, and deletion of Csf1 in all endothelial cells except bone marrow sinusoids impaired NCM survival, arguing for a model where the full vascular tree acts as a niche for NCMs and where survival and patrolling function are connected.


Assuntos
Células Endoteliais , Homeostase , Fator Estimulador de Colônias de Macrófagos , Monócitos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Animais , Monócitos/metabolismo , Monócitos/imunologia , Células Endoteliais/metabolismo , Camundongos , Sobrevivência Celular , Camundongos Knockout , Quimiocina CX3CL1/metabolismo , Camundongos Endogâmicos C57BL , Humanos
11.
Immunity ; 57(2): 364-378.e9, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301651

RESUMO

Mutations of the CBP/p300 histone acetyltransferase (HAT) domain can be linked to leukemic transformation in humans, suggestive of a checkpoint of leukocyte compartment sizes. Here, we examined the impact of reversible inhibition of this domain by the small-molecule A485. We found that A485 triggered acute and transient mobilization of leukocytes from the bone marrow into the blood. Leukocyte mobilization by A485 was equally potent as, but mechanistically distinct from, granulocyte colony-stimulating factor (G-CSF), which allowed for additive neutrophil mobilization when both compounds were combined. These effects were maintained in models of leukopenia and conferred augmented host defenses. Mechanistically, activation of the hypothalamus-pituitary-adrenal gland (HPA) axis by A485 relayed shifts in leukocyte distribution through corticotropin-releasing hormone receptor 1 (CRHR1) and adrenocorticotropic hormone (ACTH), but independently of glucocorticoids. Our findings identify a strategy for rapid expansion of the blood leukocyte compartment via a neuroendocrine loop, with implications for the treatment of human pathologies.


Assuntos
Medula Óssea , Histona Acetiltransferases , Humanos , Histona Acetiltransferases/metabolismo , Medula Óssea/metabolismo , Histonas/metabolismo , Neutrófilos/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo
12.
Cell ; 172(1-2): 191-204.e10, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29224778

RESUMO

Hematopoietic stem cell transplantation is a potential curative therapy for malignant and nonmalignant diseases. Improving the efficiency of stem cell collection and the quality of the cells acquired can broaden the donor pool and improve patient outcomes. We developed a rapid stem cell mobilization regimen utilizing a unique CXCR2 agonist, GROß, and the CXCR4 antagonist AMD3100. A single injection of both agents resulted in stem cell mobilization peaking within 15 min that was equivalent in magnitude to a standard multi-day regimen of granulocyte colony-stimulating factor (G-CSF). Mechanistic studies determined that rapid mobilization results from synergistic signaling on neutrophils, resulting in enhanced MMP-9 release, and unexpectedly revealed genetic polymorphisms in MMP-9 that alter activity. This mobilization regimen results in preferential trafficking of stem cells that demonstrate a higher engraftment efficiency than those mobilized by G-CSF. Our studies suggest a potential new strategy for the rapid collection of an improved hematopoietic graft.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/imunologia , Adulto , Animais , Benzilaminas , Quimiocina CXCL2/farmacologia , Ciclamos , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Humanos , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos ICR , Polimorfismo Genético
13.
Cell ; 175(1): 43-56.e21, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241615

RESUMO

Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.


Assuntos
Desenvolvimento Ósseo/fisiologia , Osso e Ossos/citologia , Células-Tronco Hematopoéticas/citologia , Animais , Osso e Ossos/metabolismo , Cartilagem/citologia , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula Única/métodos , Células-Tronco/citologia , Células Estromais/citologia , Transcriptoma/genética
14.
Immunity ; 56(4): 783-796.e7, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36827982

RESUMO

Diet profoundly influences physiology. Whereas over-nutrition elevates risk for disease via its influence on immunity and metabolism, caloric restriction and fasting appear to be salutogenic. Despite multiple correlations observed between diet and health, the underlying biology remains unclear. Here, we identified a fasting-induced switch in leukocyte migration that prolongs monocyte lifespan and alters susceptibility to disease in mice. We show that fasting during the active phase induced the rapid return of monocytes from the blood to the bone marrow. Monocyte re-entry was orchestrated by hypothalamic-pituitary-adrenal (HPA) axis-dependent release of corticosterone, which augmented the CXCR4 chemokine receptor. Although the marrow is a safe haven for monocytes during nutrient scarcity, re-feeding prompted mobilization culminating in monocytosis of chronologically older and transcriptionally distinct monocytes. These shifts altered response to infection. Our study shows that diet-in particular, a diet's temporal dynamic balance-modulates monocyte lifespan with consequences for adaptation to external stressors.


Assuntos
Medula Óssea , Monócitos , Camundongos , Animais , Células da Medula Óssea , Jejum , Quimiocinas/metabolismo
15.
Immunity ; 55(12): 2285-2299.e7, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36272416

RESUMO

Intravascular neutrophils and platelets collaborate in maintaining host integrity, but their interaction can also trigger thrombotic complications. We report here that cooperation between neutrophil and platelet lineages extends to the earliest stages of platelet formation by megakaryocytes in the bone marrow. Using intravital microscopy, we show that neutrophils "plucked" intravascular megakaryocyte extensions, termed proplatelets, to control platelet production. Following CXCR4-CXCL12-dependent migration towards perisinusoidal megakaryocytes, plucking neutrophils actively pulled on proplatelets and triggered myosin light chain and extracellular-signal-regulated kinase activation through reactive oxygen species. By these mechanisms, neutrophils accelerate proplatelet growth and facilitate continuous release of platelets in steady state. Following myocardial infarction, plucking neutrophils drove excessive release of young, reticulated platelets and boosted the risk of recurrent ischemia. Ablation of neutrophil plucking normalized thrombopoiesis and reduced recurrent thrombosis after myocardial infarction and thrombus burden in venous thrombosis. We establish neutrophil plucking as a target to reduce thromboischemic events.


Assuntos
Doenças Cardiovasculares , Infarto do Miocárdio , Trombose , Humanos , Megacariócitos , Trombopoese , Neutrófilos , Plaquetas/fisiologia
16.
Immunity ; 55(5): 862-878.e8, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35508166

RESUMO

Macrophage colony stimulating factor-1 (CSF-1) plays a critical role in maintaining myeloid lineage cells. However, congenital global deficiency of CSF-1 (Csf1op/op) causes severe musculoskeletal defects that may indirectly affect hematopoiesis. Indeed, we show here that osteolineage-derived Csf1 prevented developmental abnormalities but had no effect on monopoiesis in adulthood. However, ubiquitous deletion of Csf1 conditionally in adulthood decreased monocyte survival, differentiation, and migration, independent of its effects on bone development. Bone histology revealed that monocytes reside near sinusoidal endothelial cells (ECs) and leptin receptor (Lepr)-expressing perivascular mesenchymal stromal cells (MSCs). Targeted deletion of Csf1 from sinusoidal ECs selectively reduced Ly6C- monocytes, whereas combined depletion of Csf1 from ECs and MSCs further decreased Ly6Chi cells. Moreover, EC-derived CSF-1 facilitated recovery of Ly6C- monocytes and protected mice from weight loss following induction of polymicrobial sepsis. Thus, monocytes are supported by distinct cellular sources of CSF-1 within a perivascular BM niche.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Células-Tronco Mesenquimais , Animais , Medula Óssea , Células da Medula Óssea , Células Endoteliais , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Monócitos
17.
Mol Cell ; 82(21): 4176-4188.e8, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36152632

RESUMO

Stem cell division is linked to tumorigenesis by yet-elusive mechanisms. The hematopoietic system reacts to stress by triggering hematopoietic stem and progenitor cell (HSPC) proliferation, which can be accompanied by chromosomal breakage in activated hematopoietic stem cells (HSCs). However, whether these lesions persist in their downstream progeny and induce a canonical DNA damage response (DDR) remains unclear. Inducing HSPC proliferation by simulated viral infection, we report that the associated DNA damage is restricted to HSCs and that proliferating HSCs rewire their DDR upon endogenous and clastogen-induced damage. Combining transcriptomics, single-cell and single-molecule assays on murine bone marrow cells, we found accelerated fork progression in stimulated HSPCs, reflecting engagement of PrimPol-dependent repriming, at the expense of replication fork reversal. Ultimately, competitive bone marrow transplantation revealed the requirement of PrimPol for efficient HSC amplification and bone marrow reconstitution. Hence, fine-tuning replication fork plasticity is essential to support stem cell functionality upon proliferation stimuli.


Assuntos
Replicação do DNA , Hematopoese , Camundongos , Animais , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Dano ao DNA , Proliferação de Células
18.
Immunity ; 53(2): 319-334.e6, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814027

RESUMO

Neutrophils are the most abundant peripheral immune cells and thus, are continually replenished by bone marrow-derived progenitors. Still, how newly identified neutrophil subsets fit into the bone marrow neutrophil lineage remains unclear. Here, we use mass cytometry to show that two recently defined human neutrophil progenitor populations contain a homogeneous progenitor subset we term "early neutrophil progenitors" (eNePs) (Lin-CD66b+CD117+CD71+). Surface marker- and RNA-expression analyses, together with in vitro colony formation and in vivo adoptive humanized mouse transfers, indicate that eNePs are the earliest human neutrophil progenitors. Furthermore, we identified CD71 as a marker associated with the earliest neutrophil developmental stages. Expression of CD71 marks proliferating neutrophils, which were expanded in the blood of melanoma patients and detectable in blood and tumors from lung cancer patients. In summary, we establish CD117+CD71+ eNeP as the inceptive human neutrophil progenitor and propose a refined model of the neutrophil developmental lineage in bone marrow.


Assuntos
Antígenos CD/metabolismo , Células da Medula Óssea/citologia , Células Progenitoras Mieloides/metabolismo , Neutrófilos/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores da Transferrina/metabolismo , Transferência Adotiva , Animais , Medula Óssea/metabolismo , Linhagem da Célula , Humanos , Masculino , Melanoma/sangue , Camundongos , Camundongos Endogâmicos NOD , Células Progenitoras Mieloides/citologia
19.
Immunity ; 53(4): 775-792.e9, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33002412

RESUMO

Innate lymphoid cells (ILCs) are generated early during ontogeny and persist predominantly as tissue-resident cells. Here, we examined how ILCs are maintained and renewed within tissues. We generated a single cell atlas of lung ILC2s and found that Il18r1+ ILCs comprise circulating and tissue-resident ILC progenitors (ILCP) and effector-cells with heterogeneous expression of the transcription factors Tcf7 and Zbtb16, and CD103. Our analyses revealed a continuous differentiation trajectory from Il18r1+ ST2- ILCPs to Il18r- ST2+ ILC2s, which was experimentally validated. Upon helminth infection, recruited and BM-derived cells generated the entire spectrum of ILC2s in parabiotic and shield chimeric mice, consistent with their potential role in the renewal of tissue ILC2s. Our findings identify local ILCPs and reveal ILCP in situ differentiation and tissue adaptation as a mechanism of ILC maintenance and phenotypic diversification. Local niches, rather than progenitor origin, or the developmental window during ontogeny, may dominantly imprint ILC phenotypes in adult tissues.


Assuntos
Imunidade Inata/imunologia , Linfócitos/imunologia , Células Progenitoras Linfoides/imunologia , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Feminino , Humanos , Subunidade alfa de Receptor de Interleucina-18/imunologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína com Dedos de Zinco da Leucemia Promielocítica/imunologia , Transdução de Sinais/imunologia , Análise de Célula Única/métodos , Fator 1 de Transcrição de Linfócitos T/imunologia , Fatores de Transcrição/imunologia
20.
Immunity ; 51(1): 104-118.e7, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31128961

RESUMO

Innate lymphoid cells (ILCs) play strategic roles in tissue homeostasis and immunity. ILCs arise from lymphoid progenitors undergoing lineage restriction and the development of specialized ILC subsets. We generated "5x polychromILC" transcription factor reporter mice to delineate ILC precursor states by revealing the multifaceted expression of key ILC-associated transcription factors (Id2, Bcl11b, Gata3, RORγt, and RORα) during ILC development in the bone marrow. This approach allowed previously unattained enrichment of rare progenitor subsets and revealed hitherto unappreciated ILC precursor heterogeneity. In vivo and in vitro assays identified precursors with potential to generate all ILC subsets and natural killer (NK) cells, and also permitted discrimination of elusive ILC3 bone marrow antecedents. Single-cell gene expression analysis identified a discrete ILC2-committed population and delineated transition states between early progenitors and a highly heterogeneous ILC1, ILC3, and NK precursor cell cluster. This diversity might facilitate greater lineage potential upon progenitor recruitment to peripheral tissues.


Assuntos
Medula Óssea/imunologia , Subpopulações de Linfócitos/fisiologia , Linfócitos/fisiologia , Células Progenitoras Linfoides/fisiologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Imunidade Inata , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Análise de Célula Única , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA