RESUMO
Boryltin compounds featuring the metal in the+1 or 0 oxidation states can be synthesized from the carbene-stabilized tin(II) bromide (boryl)Sn(NHC)Br (boryl={B(NDippCH)2 }; NHC=C{(Ni PrCMe)2 }) by the use of strong reducing agents. The formation of the mono-carbene stabilized distannyne and donor-free distannide systems (boryl)SnSn(IPrMe)(boryl) (2) and K2 [Sn2 (boryl)2 ] (3), using Mg(I) and K reducing agents mirrors related germanium chemistry. In contrast to their lighter congeners, however, systems of the type [Sn(boryl)]n are unstable with respect to disproportionation. Carbene abstraction from 2 using BPh3 , and two-electron oxidation of 3 both result in the formation of a 2 : 1 mixture of the Sn(II) compound Sn(boryl)2 , and the hexatin cluster, Sn6 (boryl)4 (4). A viable mechanism for this rearrangement is shown by quantum chemical studies to involve a vinylidene intermediate (analogous to the isolable germanium compound, (boryl)2 Ge=Ge), which undergoes facile atom transfer to generate Sn(boryl)2 and trinuclear [Sn3 (boryl)2 ]. The latter then dimerizes to give the observed hexametallic product 4, with independent studies showing that similar trigermanium species aggregate in analogous fashion.
RESUMO
Transition metal-catalyzed site- and stereoselective C-H activation of strained (hetero)cycloalkanes remains a formidable challenge. We herein report a carbamate-directed iridium-catalyzed asymmetric ß-C(sp3 )-H borylation of cyclopropanol derivatives. A variety of densely functionalized cyclopropanols were obtained in good enantioselectivities via desymmetrization and kinetic resolution. In addition, site-selective C(sp3 )-H borylation of methine groups furnished α-borylated (hetero)cycloalkanols in moderate to good yields. The synthetic utility of the method was further shown in a gram-scale synthesis and diverse downstream transformations of borylated products.
RESUMO
Reported here is an efficient and simple ether-directed iridium-catalyzed enantioselective C(sp3 )-H borylation of cyclopropanes. Various functional groups were well-tolerated, affording a vast array of chiral cyclopropanes with high enantioselectivities. We also demonstrated that the turnover numbers of the current reaction could be up to 335.
RESUMO
Transition metal-catalyzed enantioselective C-H activation of prochiral sulfoximines for non-annulated products remains a formidable challenge. We herein report iridium-catalyzed enantioselective C-H borylation of N-silyl diaryl sulfoximines using a well-designed chiral bidentate boryl ligand with a bulky side arm. This method is capable of accommodating a broad range of substrates under mild reaction conditions, affording a vast array of chiral sulfoximines with high enantioselectivities. We also demonstrated the synthetic utility on a preparative-scale C-H borylation for diverse downstream transformations, including the synthesis of chiral version of bioactive molecules. Computational studies showed that the bulky side arm of the ligand confers high regio- and enantioselectivity through steric effect.
RESUMO
Boryl ligands play a very important role in catalysis because of their very high electron-donating property. In this paper, NNB-type boryl anions were designed as tridentate ligands to promote aryl C-H borylation. In combination with [IrCl(COD)]2, they generate a highly active catalyst for a broad range of (hetero)arene substrates, including highly electron-rich and/or sterically hindered ones. This work provides a new NNB-type tridentate boryl ligand to support homogeneous organometallic catalysis.
Assuntos
Compostos de Boro/química , Irídio/química , Compostos de Boro/síntese química , Catálise , Ligantes , Estrutura MolecularRESUMO
A series of new germylene compounds has been synthesized offering systematic variation in the σ- and π-capabilities of the α-substituent and differing levels of reactivity towards E-H bond activation (E=H, B, C, N, Si, Ge). Chloride metathesis utilizing [(terphenyl)GeCl] proves to be an effective synthetic route to complexes of the type [(terphenyl)Ge(ERn )] (1-6: ERn =NHDipp, CH(SiMe3 )2 , P(SiMe3 )2 , Si(SiMe3 )3 or B(NDippCH)2 ; terphenyl=C6 H3 Mes2 -2,6=Ar(Mes) or C6 H3 Dipp2 -2,6=Ar(Dipp) ; Dipp=C6 H3 iPr2 -2,6, Mes=C6 H2 Me3 -2,4,6), while the related complex [{(Me3 Si)2 N}Ge{B(NDippCH)2 }] (8) can be accessed by an amide/boryl exchange route. Metrical parameters have been probed by X-ray crystallography, and are consistent with widening angles at the metal centre as more bulky and/or more electropositive substituents are employed. Thus, the widest germylene units (θ>110°) are found to be associated with strongly σ-donating boryl or silyl ancillary donors. HOMO-LUMO gaps for the new germylene complexes have been appraised by DFT calculations. The aryl(boryl)-germylene system [Ar(Mes) Ge{B(NDippCH)2 }] (6-Mes), which features a wide C-Ge-B angle (110.4(1)°) and (albeit relatively weak) ancillary π-acceptor capabilities, has the smallest HOMO-LUMO gap (119â kJ mol(-1) ). These features result in 6-Mes being remarkably reactive, undergoing facile intramolecular C-H activation involving one of the mesityl ortho-methyl groups. The related aryl(silyl)-germylene system, [Ar(Mes) Ge{Si(SiMe3 )3 }] (5-Mes) has a marginally wider HOMO-LUMO gap (134â kJ mol(-1) ), rendering it less labile towards decomposition, yet reactive enough to oxidatively cleave H2 and NH3 to give the corresponding dihydride and (amido)hydride. Mixed aryl/alkyl, aryl/amido and aryl/phosphido complexes are unreactive, but amido/boryl complex 8 is competent for the activation of E-H bonds (E=H, B, Si) to give hydrido, boryl and silyl products. The results of these reactivity studies imply that the use of the very strongly σ-donating boryl or silyl substituents is an effective strategy for rendering metallylene complexes competent for E-H bond activation.