Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015892

RESUMO

Resource constraints in the Industrial Internet of Things (IIoT) result in brute-force attacks, transforming them into a botnet to launch Distributed Denial of Service Attacks. The delayed detection of botnet formation presents challenges in controlling the spread of malicious scripts in other devices and increases the probability of a high-volume cyberattack. In this paper, we propose a secure Blockchain-enabled Digital Framework for the early detection of Bot formation in a Smart Factory environment. A Digital Twin (DT) is designed for a group of devices on the edge layer to collect device data and inspect packet headers using Deep Learning for connections with external unique IP addresses with open connections. Data are synchronized between the DT and a Packet Auditor (PA) for detecting corrupt device data transmission. Smart Contracts authenticate the DT and PA, ensuring malicious nodes do not participate in data synchronization. Botnet spread is prevented using DT certificate revocation. A comparative analysis of the proposed framework with existing studies demonstrates that the synchronization of data between the DT and PA ensures data integrity for the Botnet detection model training. Data privacy is maintained by inspecting only Packet headers, thereby not requiring the decryption of encrypted data.


Assuntos
Blockchain , Internet das Coisas , Segurança Computacional , Meio Ambiente , Privacidade
2.
Sensors (Basel) ; 22(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35270994

RESUMO

In this paper, we addressed the problem of dataset scarcity for the task of network intrusion detection. Our main contribution was to develop a framework that provides a complete process for generating network traffic datasets based on the aggregation of real network traces. In addition, we proposed a set of tools for attribute extraction and labeling of traffic sessions. A new dataset with botnet network traffic was generated by the framework to assess our proposed method with machine learning algorithms suitable for unbalanced data. The performance of the classifiers was evaluated in terms of macro-averages of F1-score (0.97) and the Matthews Correlation Coefficient (0.94), showing a good overall performance average.


Assuntos
Algoritmos , Aprendizado de Máquina , Projetos de Pesquisa
3.
Sensors (Basel) ; 22(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35632055

RESUMO

Like smart phones, the recent years have seen an increased usage of internet of things (IoT) technology. IoT devices, being resource constrained due to smaller size, are vulnerable to various security threats. Recently, many distributed denial of service (DDoS) attacks generated with the help of IoT botnets affected the services of many websites. The destructive botnets need to be detected at the early stage of infection. Machine-learning models can be utilized for early detection of botnets. This paper proposes one-class classifier-based machine-learning solution for the detection of IoT botnets in a heterogeneous environment. The proposed one-class classifier, which is based on one-class KNN, can detect the IoT botnets at the early stage with high accuracy. The proposed machine-learning-based model is a lightweight solution that works by selecting the best features leveraging well-known filter and wrapper methods for feature selection. The proposed strategy is evaluated over different datasets collected from varying network scenarios. The experimental results reveal that the proposed technique shows improved performance, consistent across three different datasets used for evaluation.


Assuntos
Internet das Coisas , Internet , Aprendizado de Máquina
4.
Sensors (Basel) ; 22(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35632306

RESUMO

In recent times, organisations in a variety of businesses, such as healthcare, education, and others, have been using the Internet of Things (IoT) to produce more competent and improved services. The widespread use of IoT devices makes our lives easier. On the other hand, the IoT devices that we use suffer vulnerabilities that may impact our lives. These unsafe devices accelerate and ease cybersecurity attacks, specifically when using a botnet. Moreover, restrictions on IoT device resources, such as limitations in power consumption and the central processing unit and memory, intensify this issue because they limit the security techniques that can be used to protect IoT devices. Fortunately, botnets go through different stages before they can start attacks, and they can be detected in the early stage. This research paper proposes a framework focusing on detecting an IoT botnet in the early stage. An empirical experiment was conducted to investigate the behaviour of the early stage of the botnet, and then a baseline machine learning model was implemented for early detection. Furthermore, the authors developed an effective detection method, namely, Cross CNN_LSTM, to detect the IoT botnet based on using fusion deep learning models of a convolutional neural network (CNN) and long short-term memory (LSTM). According to the conducted experiments, the results show that the suggested model is accurate and outperforms some of the state-of-the-art methods, and it achieves 99.7 accuracy. Finally, the authors developed a kill chain model to prevent IoT botnet attacks in the early stage.


Assuntos
Aprendizado Profundo , Segurança Computacional , Atenção à Saúde , Aprendizado de Máquina , Redes Neurais de Computação
5.
PeerJ Comput Sci ; 7: e640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458571

RESUMO

Botnets can simultaneously control millions of Internet-connected devices to launch damaging cyber-attacks that pose significant threats to the Internet. In a botnet, bot-masters communicate with the command and control server using various communication protocols. One of the widely used communication protocols is the 'Domain Name System' (DNS) service, an essential Internet service. Bot-masters utilise Domain Generation Algorithms (DGA) and fast-flux techniques to avoid static blacklists and reverse engineering while remaining flexible. However, botnet's DNS communication generates anomalous DNS traffic throughout the botnet life cycle, and such anomaly is considered an indicator of DNS-based botnets presence in the network. Despite several approaches proposed to detect botnets based on DNS traffic analysis; however, the problem still exists and is challenging due to several reasons, such as not considering significant features and rules that contribute to the detection of DNS-based botnet. Therefore, this paper examines the abnormality of DNS traffic during the botnet lifecycle to extract significant enriched features. These features are further analysed using two machine learning algorithms. The union of the output of two algorithms proposes a novel hybrid rule detection model approach. Two benchmark datasets are used to evaluate the performance of the proposed approach in terms of detection accuracy and false-positive rate. The experimental results show that the proposed approach has a 99.96% accuracy and a 1.6% false-positive rate, outperforming other state-of-the-art DNS-based botnet detection approaches.

6.
J Adv Res ; 5(4): 435-48, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25685512

RESUMO

Botnets are large networks of bots (compromised machines) that are under the control of a small number of bot masters. They pose a significant threat to Internet's communications and applications. A botnet relies on command and control (C2) communications channels traffic between its members for its attack execution. C2 traffic occurs prior to any attack; hence, the detection of botnet's C2 traffic enables the detection of members of the botnet before any real harm happens. We analyze C2 traffic and find that it exhibits a periodic behavior. This is due to the pre-programmed behavior of bots that check for updates to download them every T seconds. We exploit this periodic behavior to detect C2 traffic. The detection involves evaluating the periodogram of the monitored traffic. Then applying Walker's large sample test to the periodogram's maximum ordinate in order to determine if it is due to a periodic component or not. If the periodogram of the monitored traffic contains a periodic component, then it is highly likely that it is due to a bot's C2 traffic. The test looks only at aggregate control plane traffic behavior, which makes it more scalable than techniques that involve deep packet inspection (DPI) or tracking the communication flows of different hosts. We apply the test to two types of botnet, tinyP2P and IRC that are generated by SLINGbot. We verify the periodic behavior of their C2 traffic and compare it to the results we get on real traffic that is obtained from a secured enterprise network. We further study the characteristics of the test in the presence of injected HTTP background traffic and the effect of the duty cycle on the periodic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA