Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Microb Pathog ; 189: 106596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395317

RESUMO

Botulism is a severe disease caused by potent botulinum neurotoxins (BoNTs) produced by Clostridium botulinum. This disease is associated with high-lethality outbreaks in cattle, which have been linked to the ingestion of preformed BoNT serotypes C and D, emphasizing the need for effective vaccines. The potency of current commercial toxoids (formaldehyde-inactivated BoNTs) is assured through tests in guinea pigs according to government regulatory guidelines, but their short-term immunity raises concerns. Recombinant vaccines containing the receptor-binding domain have demonstrated potential for eliciting robust protective immunity. Previous studies have demonstrated the safety and effectiveness of recombinant E. coli bacterin, eliciting high titers of neutralizing antibodies against C. botulinum and C. perfringens in target animal species. In this study, neutralizing antibody titers in cattle and the long-term immune response against BoNT/C and D were used to assess the efficacy of the oil-based adjuvant compared with that of the aluminum hydroxide adjuvant in cattle. The vaccine formulation containing Montanide™ ISA 50 yielded significantly higher titers of neutralizing antibody against BoNT/C and D (8.64 IU/mL and 9.6 IU/mL, respectively) and induced an immune response that lasted longer than the response induced by aluminum, extending between 30 and 60 days. This approach represents a straightforward, cost-effective strategy for recombinant E. coli bacterin, enhancing both the magnitude and duration of the immune response to botulism.


Assuntos
Toxinas Botulínicas , Botulismo , Clostridium botulinum , Bovinos , Animais , Cobaias , Botulismo/prevenção & controle , Botulismo/veterinária , Hidróxido de Alumínio , Escherichia coli/genética , Vacinas Bacterianas/genética , Toxinas Botulínicas/genética , Clostridium botulinum/genética , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Imunidade , Anticorpos Antibacterianos
2.
Mikrochim Acta ; 191(2): 114, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286853

RESUMO

The detection of botulinum neurotoxin A (BoNT/A) endopeptidase activity by pregnancy test paper based on human chorionic gonadotropin (hCG)-functionalized peptide-modified magnetic nanoparticles (MNs) is described for the first time. HCG-functionalized SNAP-25 peptide substrate with hydrolysis recognition sites was optimally designed. HCG can be recognized by pregnancy test strips. BoNT/A light chain (BoNT-LcA) is the central part of the endopeptidase function in holotoxin, which can specifically hydrolyze SNAP-25 peptide to release the hCG-peptide probe, and the hCG-peptide probe released can be quantitatively detected by pregnancy test strips, achieving indirect determination of BoNT/A. By quantifying the T-line color intensity of test strips, the visual detection limit for BoNT-LcA is 12.5 pg/mL, and the linear range of detection for BoNT-LcA and BoNT/A holotoxin was 100 pg/mL to 1 ng/mL and 25 to 250 ng/mL. The ability of the method to quantify BoNT/A was validated in human serum samples. This method shows the potential for sensitive detecting BoNT/A and has prospects for the diagnosis and prognosis of clinical botulism.


Assuntos
Toxinas Botulínicas Tipo A , Glicosídeos , Nanopartículas de Magnetita , Testes de Gravidez , Triterpenos , Humanos , Feminino , Gravidez , Endopeptidases , Gonadotropina Coriônica
3.
Emerg Infect Dis ; 29(10): 2175-2177, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735800

RESUMO

In 2021, an outbreak of food poisoning caused by Clostridium botulinum type C occurred in Kumamoto, Japan. Analysis of the isolated strain revealed that it possessed the bont/C gene and was slightly different from the reference bont/C gene. The risk for human infection with this new toxin type may be low.


Assuntos
Botulismo , Doenças Transmitidas por Alimentos , Humanos , Botulismo/epidemiologia , Japão/epidemiologia , Surtos de Doenças
4.
Mol Cell Proteomics ; 20: 100061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33582301

RESUMO

Synaptic transmission is mediated by the regulated exocytosis of synaptic vesicles. When the presynaptic membrane is depolarized by an incoming action potential, voltage-gated calcium channels open, resulting in the influx of calcium ions that triggers the fusion of synaptic vesicles (SVs) with the plasma membrane. SVs are recycled by endocytosis. Phosphorylation of synaptic proteins plays a major role in these processes, and several studies have shown that the synaptic phosphoproteome changes rapidly in response to depolarization. However, it is unclear which of these changes are directly linked to SV cycling and which might regulate other presynaptic functions that are also controlled by calcium-dependent kinases and phosphatases. To address this question, we analyzed changes in the phosphoproteome using rat synaptosomes in which exocytosis was blocked with botulinum neurotoxins (BoNTs) while depolarization-induced calcium influx remained unchanged. BoNT-treatment significantly alters the response of the synaptic phoshoproteome to depolarization and results in reduced phosphorylation levels when compared with stimulation of synaptosomes by depolarization with KCl alone. We dissect the primary Ca2+-dependent phosphorylation from SV-cycling-dependent phosphorylation and confirm an effect of such SV-cycling-dependent phosphorylation events on syntaxin-1a-T21/T23, synaptobrevin-S75, and cannabinoid receptor-1-S314/T322 on exo- and endocytosis in cultured hippocampal neurons.


Assuntos
Cálcio/metabolismo , Fosfoproteínas/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptossomos/metabolismo , Animais , Toxinas Botulínicas/farmacologia , Clostridium botulinum , Ácido Glutâmico/metabolismo , Células HeLa , Hipocampo/citologia , Humanos , Neurônios/metabolismo , Neurotoxinas/farmacologia , Fosforilação , Proteoma , Proteínas R-SNARE/metabolismo , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo , Sintaxina 1/metabolismo
5.
J Enzyme Inhib Med Chem ; 38(1): 2203878, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37106479

RESUMO

Clostridium botulinum neurotoxin type A (BoNT/A) is one of the most potent biotoxins ever known. Its entry into neurons could block vesicle exocytosis to abolish the release of neurotransmitters from nerve terminals, thus leading to muscle paralysis. Although there are so many peptides, antibodies and chemical compounds claimed to have anti-toxin activity, no drug is available in the clinical application except equine antitoxin serum. In the present work, a short peptide inhibitor RRGW of BoNT/A was firstly identified by computer-aided ligand-receptor binding simulation, then an RRGW derived peptide was rational designed based on the fragment of SNAP-25 (141-206 aa). Proteolytic assay showed that the anti-toxin activity of the RRGW derived peptide was much higher than that of RRGW. Digit abduction score assay demonstrated that the derived peptide delayed BoNT/A-induced muscle paralysis at a lower concentration by 20-fold than RRGW. The results supported that RRGW derived peptide can be a potential BoNT/A inhibitor candidate for further treating botulism.


Assuntos
Toxinas Botulínicas Tipo A , Botulismo , Animais , Cavalos , Toxinas Botulínicas Tipo A/farmacologia , Peptídeos/farmacologia , Botulismo/tratamento farmacológico , Paralisia
6.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674850

RESUMO

The trafficking of transient receptor potential (TRP) channels to the plasma membrane and the release of calcitonin gene-related peptide (CGRP) from trigeminal ganglion neurons (TGNs) are implicated in some aspects of chronic migraines. These exocytotic processes are inhibited by cleavage of SNAREs with botulinum neurotoxins (BoNTs); moreover, type A toxin (/A) clinically reduces the frequency and severity of migraine attacks but not in all patients for unknown reasons. Herein, neonatal rat TGNs were stimulated with allyl isothiocyanate (AITC), a TRPA1 agonist, and dose relationships were established to link the resultant exocytosis of CGRP with Ca2+ influx. The CGRP release, quantified by ELISA, was best fit by a two-site model (EC50 of 6 and 93 µM) that correlates with elevations in intracellular Ca2+ [Ca2+]i revealed by time-lapse confocal microscopy of fluo-4-acetoxymethyl ester (Fluo-4 AM) loaded cells. These signals were all blocked by two TRPA1 antagonists, HC-030031 and A967079. At low [AITC], [Ca2+]i was limited because of desensitisation to the agonist but rose for concentrations > 0.1 mM due to a deduced non-desensitising second phase of Ca2+ influx. A recombinant BoNT chimera (/DA), which cleaves VAMP1/2/3, inhibited AITC-elicited CGRP release to a greater extent than SNAP-25-cleaving BoNT/A. /DA also proved more efficacious against CGRP efflux evoked by a TRPV1 agonist, capsaicin. Nerve growth factor (NGF), a pain-inducing sensitiser of TGNs, enhanced the CGRP exocytosis induced by low [AITC] only. Both toxins blocked NGF-induced neuropeptide secretion and its enhancement of the response to AITC. In conclusion, NGF sensitisation of sensory neurons involves TRPA1, elevated Ca2+ influx, and CGRP exocytosis, mediated by VAMP1/2/3 and SNAP-25 which can be attenuated by the BoNTs.


Assuntos
Toxinas Botulínicas , Canais de Potencial de Receptor Transitório , Ratos , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Toxinas Botulínicas/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1/metabolismo
7.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457172

RESUMO

Tetanus and Botulinum type B neurotoxins are bacterial metalloproteases that specifically cleave the vesicle-associated membrane protein VAMP at an identical peptide bond, resulting in inhibition of neuroexocytosis. The minute amounts of these neurotoxins commonly used in experimental animals are not detectable, nor is detection of their VAMP substrate sensitive enough. The immune detection of the cleaved substrate is much more sensitive, as we have previously shown for botulinum neurotoxin type A. Here, we describe the production in rabbit of a polyclonal antibody raised versus a peptide encompassing the 13 residues C-terminal with respect to the neurotoxin cleavage site. The antibody was affinity purified and found to recognize, with high specificity and selectivity, the novel N-terminus of VAMP that becomes exposed after cleavage by tetanus toxin and botulinum toxin type B. This antibody recognizes the neoepitope not only in native and denatured VAMP but also in cultured neurons and in neurons in vivo in neurotoxin-treated mice or rats, suggesting the great potential of this novel tool to elucidate tetanus and botulinum B toxin activity in vivo.


Assuntos
Toxinas Botulínicas Tipo A , Tétano , Animais , Anticorpos/metabolismo , Camundongos , Neurotoxinas/metabolismo , Peptídeos/metabolismo , Proteólise , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Coelhos , Ratos , Toxina Tetânica/química , Toxina Tetânica/metabolismo
8.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055082

RESUMO

Nerve growth factor (NGF) is known to intensify pain in various ways, so perturbing pertinent effects without negating its essential influences on neuronal functions could help the search for much-needed analgesics. Towards this goal, cultured neurons from neonatal rat trigeminal ganglia-a locus for craniofacial sensory nerves-were used to examine how NGF affects the Ca2+-dependent release of a pain mediator, calcitonin gene-related peptide (CGRP), that is triggered by activating a key signal transducer, transient receptor potential vanilloid 1 (TRPV1) with capsaicin (CAP). Measurements utilised neurons fed with or deprived of NGF for 2 days. Acute re-introduction of NGF induced Ca2+-dependent CGRP exocytosis that was inhibited by botulinum neurotoxin type A (BoNT/A) or a chimera of/E and/A (/EA), which truncated SNAP-25 (synaptosomal-associated protein with Mr = 25 k) at distinct sites. NGF additionally caused a Ca2+-independent enhancement of the neuropeptide release evoked by low concentrations (<100 nM) of CAP, but only marginally increased the peak response to ≥100 nM. Notably, BoNT/A inhibited CGRP exocytosis evoked by low but not high CAP concentrations, whereas/EA effectively reduced responses up to 1 µM CAP and inhibited to a greater extent its enhancement by NGF. In addition to establishing that sensitisation of sensory neurons to CAP by NGF is dependent on SNARE-mediated membrane fusion, insights were gleaned into the differential ability of two regions in the C-terminus of SNAP-25 (181-197 and 198-206) to support CAP-evoked Ca2+-dependent exocytosis at different intensities of stimulation.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/biossíntese , Capsaicina/farmacologia , Fator de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo , Animais , Toxinas Botulínicas Tipo A/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Exocitose/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Proteólise , Ratos , Proteína 25 Associada a Sinaptossoma/metabolismo
9.
Handb Exp Pharmacol ; 263: 35-47, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32277300

RESUMO

Botulinum neurotoxins (BoNTs) are a growing family of bacterial protein toxins that cause botulism, a rare but often fatal animal and human disease. They are the most potent toxins known owing to their molecular architecture, which underlies their mechanism of action. BoNTs target peripheral nerve terminals by a unique mode of binding and enter into their cytosol where they cleave SNARE proteins, thus inhibiting the neurotransmitter release. The specificity and rapidity of binding, which limits the anatomical area of its neuroparalytic action, and its reversible action make BoNT a valuable pharmaceutical to treat neurological and non-neurological diseases determined by hyperactivity of cholinergic nerve terminals. This review reports the progress on our understanding of how BoNTs cause nerve paralysis highlighting the different steps of their molecular mechanism of action as key aspects to explain their extreme toxicity but also their unique pharmacological properties.


Assuntos
Botulismo , Neurotoxinas , Animais , Humanos , Paralisia , Transmissão Sináptica
10.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299143

RESUMO

Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and are responsible for botulism, a fatal disorder of the nervous system mostly induced by food poisoning. Despite being one of the most potent families of poisonous substances, BoNTs are used for both aesthetic and therapeutic indications from cosmetic reduction of wrinkles to treatment of movement disorders. The increasing understanding of the biology of BoNTs and the availability of distinct toxin serotypes and subtypes offer the prospect of expanding the range of indications for these toxins. Engineering of BoNTs is considered to provide a new avenue for improving safety and clinical benefit from these neurotoxins. Robust, high-throughput, and cost-effective assays for BoNTs activity, yet highly relevant to the human physiology, have become indispensable for a successful translation of engineered BoNTs to the clinic. This review presents an emerging family of cell-based assays that take advantage of newly developed human pluripotent stem cells and neuronal function analyses technologies.


Assuntos
Bioensaio/métodos , Toxinas Botulínicas/farmacologia , Neurônios/citologia , Neurotoxinas/farmacologia , Células-Tronco Pluripotentes/citologia , Animais , Toxinas Botulínicas/classificação , Humanos , Neurônios/efeitos dos fármacos , Neurotoxinas/classificação , Células-Tronco Pluripotentes/efeitos dos fármacos
11.
Bioorg Chem ; 92: 103297, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31557621

RESUMO

OBJECTIVES: Botulinum neurotoxins are highly potent biological warfare agents. The unavailability of countermeasures against these neurotoxins has been a matter of extensive research. However, no clinical therapeutics has come to existence till date. The 8-hydroxyquinoline (8-HQ) scaffold is established privileged compound and its potential as drug candidate against BoNTs is recently being explored. METHODS: In present work, three course studies were performed involving in silico, in vitro and in vivo cascade to screen 8-HQ small molecule inhibitors against BoNT/F intoxication. ~800 molecules obtained from open repositories were screened in silico and commercially obtained twenty-four 8-HQ derived small molecule inhibitors were evaluated against rBoNT/F light chain through fluorescence thermal shift (FTS) assay. Selected compounds were further evaluated through endopeptidase assay. Further binding affinity analysis was done through surface plasmon resonance (SPR) based Proteon™ XPR 36 system. Finally, the in vivo efficacy of these compounds was evaluated in mice model. RESULTS: Three compounds NSC1011, NSC1014 and NSC84094 were found to be highly inhibitory after screening of 8-HQ compounds through FTS assay and endopeptidase assay. SPR based protein-small molecule interaction studies showed highest affinity binding of NSC1014 (KD: 5.58E-06) with BoNT/F-LC. NSC1011, NSC1014, and NSC84094 displayed IC50 of 30.47 ±â€¯6.24, 14.91 ±â€¯2.49 and 17.39 ±â€¯2.74 µM, respectively, in endopeptidase assay. NSC1011 and NSC1014 displayed marked extension of survival time in mice model. CONCLUSION: NSC1011 and NSC1014 have emerged as promising drug candidate against BoNT/F intoxication displaying higher potential than previously reported compounds.


Assuntos
Toxinas Botulínicas/antagonistas & inibidores , Descoberta de Drogas , Oxiquinolina/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Toxinas Botulínicas/metabolismo , Relação Dose-Resposta a Droga , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Oxiquinolina/síntese química , Oxiquinolina/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
12.
Sensors (Basel) ; 19(19)2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31546587

RESUMO

Rapid and sensitive detection of botulinum neurotoxins (BoNTs) is important for immediate treatment with proper antitoxins. However, it is difficult to detect BoNTs at the acute phase of infection, owing to its rarity and ambiguous symptoms. To resolve this problem, we developed a surface-enhanced Raman scattering (SERS)-based immunoassay technique for the rapid and sensitive detection of BoNTs. Magnetic beads and SERS nanotags as capture substrates and detection probes, respectively, and Nile Blue A (NBA) and malachite green isothiocyanate (MGITC) as Raman reporter molecules were used for the detection of two different types of BoNTs (types A and B), respectively. The corresponding limits of detection (LODs) were determined as 5.7 ng/mL (type A) and 1.3 ng/mL (type B). Total assay time, including that for immunoreaction, washing, and detection, was less than 2 h.


Assuntos
Toxinas Botulínicas/análise , Imunoensaio/métodos , Análise Espectral Raman/métodos , Bioterrorismo , Humanos , Isotiocianatos/química , Oxazinas/química
13.
Protein Expr Purif ; 146: 51-60, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29407166

RESUMO

Botulinum neurotoxins (BoNTs) are the most toxic biological substances known. Their potential use as biological warfare agent results in their classification as category A biowarfare agent by Centers for Disease Control and Prevention (CDC), USA. Presently, there are no approved detection system and pharmacological treatments for BoNT intoxication. Although a toxoid vaccine is available for immuno-prophylaxis, vaccines cannot reverse the effect of pre-translocated toxin. Direct handling of the live BoNTs for developing detection and therapeutics may pose fatal danger. This concern was addressed by purifying the recombinant catalytically active light chain of BoNT/F. BoNT/F-LC gene was amplified from the genomic DNA using specifically designed primers and expressed in Escherichia coli. Expression and purification profile were optimized under different conditions for biologically active light chain production. Specific polyclonal antibodies generated against type F illustrates in vivo neutralization in mice and rabbit. These antibodies play key role in conceiving the development of high throughput SPR based detection system which is a highly precise label free technique for protein interaction analysis. The presented work is first of its kind, signifying the production of highly stable and active rBoNT/F-LC and its immunochemical characterization. The study aids in paving the path towards developing a persistent detection system as well as in presenting comprehended scheme for in vitro small molecule therapeutics analysis.


Assuntos
Toxinas Botulínicas/genética , Clonagem Molecular/métodos , Clostridium botulinum/genética , Animais , Anticorpos Neutralizantes/imunologia , Toxinas Botulínicas/química , Toxinas Botulínicas/imunologia , Botulismo/imunologia , Botulismo/microbiologia , Clostridium botulinum/química , Clostridium botulinum/imunologia , Escherichia coli/genética , Camundongos , Camundongos Endogâmicos BALB C , Coelhos
14.
Indian J Med Res ; 147(6): 603-610, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30168493

RESUMO

Background & objectives: Botulism, a potentially fatal paralytic illness, is caused by the botulinum neurotoxins (BoNTs) secreted by Clostridium botulinum. It is an obligate anaerobic, Gram-positive, spore-forming bacterium. BoNTs are classified into seven serotypes based on the serological properties. Among these seven serotypes, A, B, E and, rarely, F are responsible for human botulism. The present study was undertaken to develop an enzyme-linked immunosorbent assay (ELISA)-based detection system for the detection of BoNT/E. Methods: The synthetic gene coding the light chain of BoNT serotype E (BoNT/E LC) was constructed using the polymerase chain reaction primer overlapping method, cloned into pQE30UA vector and then transformed into Escherichia coli M15 host cells. Recombinant protein expression was optimized using different concentrations of isopropyl-ß-D-1-thiogalactopyranoside (IPTG), different temperature and the rBoNT/E LC protein was purified in native conditions using affinity column chromatography. The purified recombinant protein was checked by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and further confirmed by western blot and matrix-assisted laser desorption ionization-tandem time-of-flight (MALDI-TOF). Polyclonal antibodies were generated against rBoNT/E LC using Freund's adjuvant in BALB/c mice and rabbit. Sandwich ELISA was optimized for the detection of rBoNT/E LC and native crude BoNT/E, and food matrix interference was tested. The developed antibodies were further evaluated for their specificity/cross-reactivity with BoNT serotypes and other bacterial toxins. Results: BoNT/E LC was successfully cloned, and the maximum expression was achieved in 16 h of post-induction using 0.5 mM IPTG concentration at 25°C. Polyclonal antibodies were generated in BALB/c mice and rabbit and the antibody titre was raised up to 128,000 after the 2nd booster dose. The developed polyclonal antibodies were highly specific and sensitive with a detection limit about 50 ng/ml for rBoNT/E LC and 2.5×10[3] MLD50 of native crude BoNT/E at a dilution of 1:3000 of mouse (capturing) and rabbit (revealing) antibodies. Further, different liquid, semisolid and solid food matrices were tested, and rBoNT/E LC was detected in almost all food samples, but different levels of interference were detected in different food matrices. Interpretation & conclusions: There is no immune detection system available commercially in India to detect botulism. The developed system might be useful for the detection of botulinum toxin in food and clinical samples. Further work is in progress.


Assuntos
Botulismo/diagnóstico , Clostridium botulinum/imunologia , Sorogrupo , Animais , Austrália , Clostridium botulinum/classificação , Humanos , Índia , Camundongos , Camundongos Endogâmicos BALB C , Proteômica , Coelhos
15.
Bioorg Med Chem Lett ; 27(22): 4956-4959, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29050781

RESUMO

Botulinum neurotoxins (BoNT) are among the most toxic known substances and currently there are no effective treatments for intraneuronal BoNT intoxication. Chicoric acid (ChA) was previously reported as a BoNT/A inhibitor that binds to the enzyme's α-exosite. Herein, we report the synthesis and structure-activity relationships (SARs) of a series of ChA derivatives, which revealed essential binding interactions between ChA and BoNT/A. Moreover, several ChA-based inhibitors with improved potency against the BoNT/A were discovered.


Assuntos
Toxinas Botulínicas Tipo A/antagonistas & inibidores , Ácidos Cafeicos/química , Inibidores de Proteases/química , Succinatos/química , Toxinas Botulínicas Tipo A/metabolismo , Ácidos Cafeicos/síntese química , Ácidos Cafeicos/metabolismo , Clostridium botulinum/enzimologia , Concentração Inibidora 50 , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Relação Estrutura-Atividade , Succinatos/síntese química , Succinatos/metabolismo
16.
Epidemiol Mikrobiol Imunol ; 66(1): 39-48, 2017.
Artigo em Tcheco | MEDLINE | ID: mdl-28374597

RESUMO

Human foodborne botulism is an intoxication caused by ingestion of botulinum neurotoxins (BoNT) of serotypes A, B, E, and rarely also serotype F, produced in contaminated food by anaerobic bacteria Clostridium botulinum group I, group II, or by toxigenic strains of C. butyricum and C. baratii. BoNT-producing Clostridia are ubiquitously distributed in the environment and, under suitable conditions, they can enter the food chain, proliferate and produce BoNT in a variety of foods. In the past, the risk of foodborne botulism was primarily associated with homemade canned foods; however, the epidemiological importance of commercial and restaurant food is increasing nowadays. In this article, we review the public health aspects of foodborne botulism, including its clinical, epidemiological and laboratory diagnosis and discuss potential risks associated with minimally heated, vacuum or modified atmosphere-packed, ready-to-eat foods of extended durability.


Assuntos
Botulismo , Saúde Pública , Botulismo/epidemiologia , Clostridium botulinum , Microbiologia de Alimentos , Humanos , Saúde Pública/estatística & dados numéricos , Saúde Pública/tendências , Sorogrupo
17.
Bioorg Med Chem ; 23(13): 3667-73, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25913863

RESUMO

It is essential to have a simple, quick and sensitive method for the detection and quantification of botulinum neurotoxins, the most toxic substances and the causative agents of botulism. Type C botulinum neurotoxin (BoNT/C) represents one of the seven members of distinctive BoNT serotypes (A to G) that cause botulism in animals and avians. Here we report the development of optimized peptide substrates for improving the detection of BoNT/C and /CD mosaic toxins using an Endopep-MS assay, a mass spectrometry-based method that is able to rapidly and sensitively detect and differentiate all types of BoNTs by extracting the toxin with specific antibodies and detecting the unique cleavage products of peptide substrates. Based on the sequence of a short SNAP-25 peptide, we conducted optimization through a comprehensive process including length determination, terminal modification, single and multiple amino acid residue substitution, and incorporation of unnatural amino acid residues. Our data demonstrate that an optimal peptide provides a more than 200-fold improvement over the substrate currently used in the Endopep-MS assay for the detection of BoNT/C1 and /CD mosaic. Using the new substrate in a four-hour cleavage reaction, the limit of detection for the BoNT/C1 complex spiked in buffer, serum and milk samples was determined to be 0.5, 0.5 and 1mouseLD50/mL, respectively, representing a similar or higher sensitivity than that obtained by traditional mouse bioassay.


Assuntos
Anticorpos Monoclonais/química , Bioensaio , Toxinas Botulínicas/sangue , Peptídeos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação de Anticorpos , Clostridium botulinum/química , Humanos , Limite de Detecção , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Peptídeos/síntese química , Ligação Proteica , Proteólise
18.
Biochem Biophys Res Commun ; 446(2): 568-73, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24631690

RESUMO

Botulinum neurotoxins (BoNTs) are produced as progenitor toxin complexes (PTCs) by Clostridium botulinum. The PTCs are composed of BoNT and non-toxic neurotoxin-associated proteins (NAPs), which serve to protect and deliver BoNT through the gastrointestinal tract in food borne botulism. HA33 is a key NAP component that specifically recognizes host carbohydrates and helps enrich PTC on the intestinal lumen preceding its transport across the epithelial barriers. Here, we report the crystal structure of HA33 of type B PTC (HA33/B) in complex with lactose at 1.46Å resolution. The structural comparisons among HA33 of serotypes A-D reveal two different HA33-glycan interaction modes. The glycan-binding pockets on HA33/A and B are more suitable to recognize galactose-containing glycans in comparison to the equivalent sites on HA33/C and D. On the contrary, HA33/C and D could potentially recognize Neu5Ac as an independent receptor, whereas HA33/A and B do not. These findings indicate that the different oral toxicity and host susceptibility observed among different BoNT serotypes could be partly determined by the serotype-specific interaction between HA33 and host carbohydrate receptors. Furthermore, we have identified a key structural water molecule that mediates the HA33/B-lactose interactions. It provides the structural basis for development of new receptor-mimicking compounds, which have enhanced binding affinity with HA33 through their water-displacing moiety.


Assuntos
Toxinas Botulínicas/química , Toxinas Botulínicas/ultraestrutura , Lactose/química , Modelos Químicos , Modelos Moleculares , Água/química , Sítios de Ligação , Toxinas Botulínicas Tipo A , Simulação por Computador , Conformação Molecular , Ligação Proteica
19.
Anaerobe ; 28: 220-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997242

RESUMO

The aim of this study is to investigate Clostridium botulinum at a Saxony dairy farm with 159 cows and 18 heifers. The animals exhibited clinical symptoms of chronic botulism. To determine the source of the infection, feces, blood, organs, and gastrointestinal fluids of dead or euthanized cows; as well as soil, water, silage and manure were tested for C. botulinum spores and BoNTs using ELISA. BoNT/C and C. botulinum type C were detected in 53% and 3% of tested animals, respectively, while BoNT/D and C. botulinum type D were detected in 18% of the animals. C. botulinum also was detected in organs, gastrointestinal fluids, drinking water and manure. To evaluate possible treatments, animals were given Jerusalem artichoke syrup (JAS), Botulism vaccine (formalinised aluminum hydroxide gel adsorbed toxoid of C. botulinum types C and D) or a suspension of Enterococcus faecalis. After four weeks treatment with JAS, BoNT/C and C. botulinum type C were not detected in feces. In contrast, BoNT/D and C. botulinum type D were not significantly influenced by the JAS treatment. Vaccination with botulism vaccine and the E. faecalis suspension significantly decreased BoNT/D and C. botulinum type D. A significant increase of Enterococci was detected in animals treated with E. faecalis. Interestingly, there was a negative correlation between the detection of both BoNT and C. botulinum with the concentration of Enterococci in feces. Although C. botulinum C and D antibodies increased significantly (p < 0.0001) after vaccination with the botulism vaccine, the reduction of C. botulinum and BoNT in feces did not result in recovery of the animals because they were deficient of trace elements [manganese (Mn), cobalt (Co), copper (Cu) and selenium (Se)]. Animals treated with trace elements recovered. It appears that intestinal microbiota dysbiosis and trace element deficiency could explain the extensive emergence of chronic Botulism.


Assuntos
Toxinas Botulínicas/análise , Botulismo/veterinária , Doenças dos Bovinos/diagnóstico , Clostridium botulinum tipo C/isolamento & purificação , Clostridium botulinum tipo D/isolamento & purificação , Disbiose/veterinária , Animais , Animais Domésticos , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/uso terapêutico , Terapia Biológica , Líquidos Corporais/microbiologia , Antitoxina Botulínica/sangue , Antitoxina Botulínica/uso terapêutico , Botulismo/diagnóstico , Botulismo/patologia , Botulismo/terapia , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/patologia , Doenças dos Bovinos/terapia , Causalidade , Doença Crônica , Dieta , Disbiose/diagnóstico , Disbiose/patologia , Disbiose/terapia , Enterococcus faecalis/crescimento & desenvolvimento , Microbiologia Ambiental , Fezes/microbiologia , Alemanha , Helianthus/química , Extratos Vegetais/uso terapêutico , Oligoelementos/uso terapêutico
20.
J Sci Food Agric ; 94(4): 707-12, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23873138

RESUMO

BACKGROUND: Specific screening methods for complex food matrices are needed that enable unambiguous and sensitive detection of bio threat agents (BTAs) such as Bacillus anthracis spores and microbial toxins (e.g. staphylococcal enterotoxin B (SEB) and clostridial botulinum neurotoxins (BoNTs)). The present study describes an image-based 96-well Meso Scale Discovery (MSD) electrochemiluminescence (ECL) assay for simultaneous detection of BTAs in dairy milk products. RESULTS: The limit of detection of this ECL assay is 40 pg mL⁻¹ for BoNT/A complex, 10 pg mL⁻¹ for SEB and 40000 CFU mL⁻¹ for Bacillus anthracis spores in dairy milk products. The ECL assay was successfully applied to screen type A Clostridium botulinum outbreak strains. CONCLUSION: The results of the study indicate that this ECL assay is very sensitive, rapid (<6 h) and multiplex in nature. The ECL assay has potential for use as an in vitro screening method for BTAs over other comparable immunoassays.


Assuntos
Toxinas Bacterianas/análise , Clostridium botulinum tipo A/isolamento & purificação , Laticínios/análise , Contaminação de Alimentos , Inspeção de Alimentos/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Luminescência , Antígenos de Bactérias/análise , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Bacillus anthracis/crescimento & desenvolvimento , Bacillus anthracis/isolamento & purificação , Bacillus anthracis/fisiologia , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxinas Botulínicas Tipo A/análise , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/epidemiologia , Botulismo/microbiologia , Botulismo/prevenção & controle , Clostridium botulinum tipo A/crescimento & desenvolvimento , Clostridium botulinum tipo A/metabolismo , Contagem de Colônia Microbiana , Laticínios/efeitos adversos , Laticínios/microbiologia , Surtos de Doenças/prevenção & controle , Técnicas Eletroquímicas , Enterotoxinas/análise , Enterotoxinas/química , Enterotoxinas/metabolismo , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/etiologia , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Limite de Detecção , Medições Luminescentes , Esporos Bacterianos/isolamento & purificação , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA