Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(12): e2302902, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38199238

RESUMO

Brain cancers, especially glioblastoma multiforme, are associated with poor prognosis due to the limited efficacy of current therapies. Nanomedicine has emerged as a versatile technology to treat various diseases, including cancers, and has played an indispensable role in combatting the COVID-19 pandemic as evidenced by the role that lipid nanocarrier-based vaccines have played. The tunability of nanocarrier physicochemical properties -including size, shape, surface chemistry, and drug release kinetics- has resulted in the development of a wide range of nanocarriers for brain cancer treatment. These nanocarriers can improve the pharmacokinetics of drugs, increase blood-brain barrier transfer efficiency, and specifically target brain cancer cells. These unique features would potentially allow for more efficient treatment of brain cancer with fewer side effects and better therapeutic outcomes. This review provides an overview of brain cancers, current therapeutic options, and challenges to efficient brain cancer treatment. The latest advances in nanomedicine strategies are investigated with an emphasis on targeted and stimulus-responsive nanocarriers and their potential for clinical translation.


Assuntos
Neoplasias Encefálicas , Portadores de Fármacos , Nanopartículas , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos/química , Nanopartículas/química , Nanopartículas/uso terapêutico , Nanomedicina/métodos , Barreira Hematoencefálica/metabolismo , COVID-19 , Animais , Sistemas de Liberação de Medicamentos/métodos , SARS-CoV-2 , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
2.
Drug Deliv Transl Res ; 12(7): 1588-1604, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34537930

RESUMO

The most challenging task in targeting the brain is trespassing the blood-brain barrier (BBB) which restricts the movement of about 98% small molecules. Targeting the central nervous system using magnetic nanoparticles may deliver the drug to the target site along with a contrast imaging property. The use of magnetic nanoparticles can become non-invasive drug targeting and a bio-imaging method for brain cancer. The strategy to apply polymeric nanoparticles as a carrier of magnetic iron oxide nanoparticles can be a promising tool as a multitherapeutic drug delivery approach involving delivery of chemotherapeutic drugs with a magnetic targeting approach, imaging, and hyperthermia. This review will highlight the existing difficulties/barriers in crossing the BBB, types of magnetic materials, polymeric carriers for functionalization of magnetic nanoparticles, and targeting strategies as therapeutic and imaging modalities. Utilization of polymeric magnetic nanoparticles as an efficient targeting platform for better drug delivery and imaging for brain cancer and future prospects are also discussed. Polymeric magnetic nanoparticles as a drug delivery and bio-imaging vehicle for brain cancer.


Assuntos
Neoplasias Encefálicas , Nanopartículas de Magnetita , Nanopartículas , Barreira Hematoencefálica , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Polímeros
3.
Cancer Biol Med ; 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34002583

RESUMO

Brain cancer, also known as intracranial cancer, is one of the most invasive and fatal cancers affecting people of all ages. Despite the great advances in medical technology, improvements in transporting drugs into brain tissue have been limited by the challenge of crossing the blood-brain barrier (BBB). Fortunately, recent endeavors using gold-based nanomaterials (GBNs) have indicated the potential of these materials to cross the BBB. Therefore, GBNs might be an attractive therapeutic strategy against brain cancer. Herein, we aim to present a comprehensive summary of current understanding of the critical effects of the physicochemical properties and surface modifications of GBNs on BBB penetration for applications in brain cancer treatment. Furthermore, the most recent GBNs and their impressive performance in precise bioimaging and efficient inhibition of brain tumors are also summarized, with an emphasis on the mechanism of their effective BBB penetration. Finally, the challenges and future outlook in using GBNs for brain cancer treatment are discussed. We hope that this review will spark researchers' interest in constructing more powerful nanoplatforms for brain disease treatment.

4.
ACS Appl Mater Interfaces ; 12(26): 28928-28940, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432847

RESUMO

The development of biocompatible drug delivery vehicles for cancer therapy in the brain remains a big challenge. In this study, we designed self-assembled DNA nanocages functionalized with or without blood-brain barrier (BBB)-targeting ligands, d and we investigated their penetration across the BBB. Our DNA nanocages were not cytotoxic and they were substantially taken up in brain capillary endothelial cells and Uppsala 87 malignant glioma (U-87 MG) cells. We found that ligand modification is not essential for this DNA system as the ligand-free DNA nanocages (LF-NCs) could still cross the BBB by endocytosis inin vitro and in vivo models. Our spherical DNA nanocages were more permeable across the BBB compared with tubular DNA nanotubes. Remarkably, in vivo studies revealed that DNA nanocages could carry anticancer drugs across the BBB and inhibit the tumor growth in a U-87 MG xenograft mouse model. This is the first example showing the potential of DNA nanocages as innovative delivery vehicles to the brain for cancer therapy. Unlike other delivery systems, our work suggest that a DNA nanocage-based platform provides a safe and cost-effective tool for targeted delivery to the brain and therapy for brain tumors.


Assuntos
Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glioma/metabolismo , Animais , Antineoplásicos/química , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Humanos , Camundongos , Nanotubos/química , Ensaios Antitumorais Modelo de Xenoenxerto
5.
ACS Biomater Sci Eng ; 5(6): 2669-2687, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33405601

RESUMO

Progress in nanomedicine has enabled the development of smart hybrid nanostructures (HNSs) for brain cancer theranostics, a novel platform that can diagnose the brain while concurrently beginning primary treatment, initiating secondary treatments where necessary, and monitoring the therapy response. These HNSs can release guest molecules/cargoes directly to brain tumors in response to external physical stimuli. Such physical stimulation is generally referred to as remote stimuli which can be externally applied examples include alternating magnetic field, visible or near-infrared light, ultrasound radiation, X-ray, and radiofrequency. The release of therapeutic cargoes in response to physical stimuli can be performed along with photodynamic therapy, photothermal therapy, phototriggered chemotherapeutics, sonodynamic therapy, electrothermal therapy, and magnetothermal therapy. Herein, we review different HNSs currently used as remotely triggered modalities in brain cancer, such as organic-inorganic HNSs, polymer micelles, and liposomes HNSs. We also summarize underlying mechanisms of remote triggering brain cancer therapeutics including single- and two-photon triggering, thermoresponsive HNSs, photoresponsive HNSs, magnetoresponsive HNSs, and electrically and ultrasound-stimulated HNSs. In addition to a brief synopsis of ongoing research progress on "smart" HNSs-based platforms of novel brain cancer therapeutics, the review offers an up-to-date development in this field for neuro-oncologists, material/nanoscientists, and radiologists so that a rapid clinical impact can be achieved through a convergence of multidisciplinary expertise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA