Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2401959121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547065

RESUMO

The contents and dynamics of spontaneous thought are important factors for personality traits and mental health. However, assessing spontaneous thoughts is challenging due to their unconstrained nature, and directing participants' attention to report their thoughts may fundamentally alter them. Here, we aimed to decode two key content dimensions of spontaneous thought-self-relevance and valence-directly from brain activity. To train functional MRI-based predictive models, we used individually generated personal stories as stimuli in a story-reading task to mimic narrative-like spontaneous thoughts (n = 49). We then tested these models on multiple test datasets (total n = 199). The default mode, ventral attention, and frontoparietal networks played key roles in the predictions, with the anterior insula and midcingulate cortex contributing to self-relevance prediction and the left temporoparietal junction and dorsomedial prefrontal cortex contributing to valence prediction. Overall, this study presents brain models of internal thoughts and emotions, highlighting the potential for the brain decoding of spontaneous thought.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Emoções , Córtex Pré-Frontal , Giro do Cíngulo , Imageamento por Ressonância Magnética/métodos
2.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629796

RESUMO

Neuroimaging studies have shown that the neural representation of imagery is closely related to the perception modality; however, the undeniable different experiences between perception and imagery indicate that there are obvious neural mechanism differences between them, which cannot be explained by the simple theory that imagery is a form of weak perception. Considering the importance of functional integration of brain regions in neural activities, we conducted correlation analysis of neural activity in brain regions jointly activated by auditory imagery and perception, and then brain functional connectivity (FC) networks were obtained with a consistent structure. However, the connection values between the areas in the superior temporal gyrus and the right precentral cortex were significantly higher in auditory perception than in the imagery modality. In addition, the modality decoding based on FC patterns showed that the FC network of auditory imagery and perception can be significantly distinguishable. Subsequently, voxel-level FC analysis further verified the distribution regions of voxels with significant connectivity differences between the 2 modalities. This study complemented the correlation and difference between auditory imagery and perception in terms of brain information interaction, and it provided a new perspective for investigating the neural mechanisms of different modal information representations.


Assuntos
Córtex Auditivo , Mapeamento Encefálico , Mapeamento Encefálico/métodos , Imaginação , Encéfalo/diagnóstico por imagem , Percepção Auditiva , Córtex Cerebral , Imageamento por Ressonância Magnética/métodos , Córtex Auditivo/diagnóstico por imagem
3.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34732577

RESUMO

Processes evoked by seeing a personally familiar face encompass recognition of visual appearance and activation of social and person knowledge. Whereas visual appearance is the same for all viewers, social and person knowledge may be more idiosyncratic. Using between-subject multivariate decoding of hyperaligned functional magnetic resonance imaging data, we investigated whether representations of personally familiar faces in different parts of the distributed neural system for face perception are shared across individuals who know the same people. We found that the identities of both personally familiar and merely visually familiar faces were decoded accurately across brains in the core system for visual processing, but only the identities of personally familiar faces could be decoded across brains in the extended system for processing nonvisual information associated with faces. Our results show that personal interactions with the same individuals lead to shared neural representations of both the seen and unseen features that distinguish their identities.


Assuntos
Encéfalo/fisiologia , Reconhecimento Facial/fisiologia , Reconhecimento Psicológico/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Semântica
4.
Neuroimage ; 277: 120253, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385392

RESUMO

Machine learning (ML) is increasingly used in cognitive, computational and clinical neuroscience. The reliable and efficient application of ML requires a sound understanding of its subtleties and limitations. Training ML models on datasets with imbalanced classes is a particularly common problem, and it can have severe consequences if not adequately addressed. With the neuroscience ML user in mind, this paper provides a didactic assessment of the class imbalance problem and illustrates its impact through systematic manipulation of data imbalance ratios in (i) simulated data and (ii) brain data recorded with electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). Our results illustrate how the widely-used Accuracy (Acc) metric, which measures the overall proportion of successful predictions, yields misleadingly high performances, as class imbalance increases. Because Acc weights the per-class ratios of correct predictions proportionally to class size, it largely disregards the performance on the minority class. A binary classification model that learns to systematically vote for the majority class will yield an artificially high decoding accuracy that directly reflects the imbalance between the two classes, rather than any genuine generalizable ability to discriminate between them. We show that other evaluation metrics such as the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC), and the less common Balanced Accuracy (BAcc) metric - defined as the arithmetic mean between sensitivity and specificity, provide more reliable performance evaluations for imbalanced data. Our findings also highlight the robustness of Random Forest (RF), and the benefits of using stratified cross-validation and hyperprameter optimization to tackle data imbalance. Critically, for neuroscience ML applications that seek to minimize overall classification error, we recommend the routine use of BAcc, which in the specific case of balanced data is equivalent to using standard Acc, and readily extends to multi-class settings. Importantly, we present a list of recommendations for dealing with imbalanced data, as well as open-source code to allow the neuroscience community to replicate and extend our observations and explore alternative approaches to coping with imbalanced data.


Assuntos
Benchmarking , Encéfalo , Humanos , Magnetoencefalografia , Aprendizado de Máquina , Eletroencefalografia , Algoritmos
5.
Hum Brain Mapp ; 44(7): 2921-2935, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36852610

RESUMO

Brain decoding, aiming to identify the brain states using neural activity, is important for cognitive neuroscience and neural engineering. However, existing machine learning methods for fMRI-based brain decoding either suffer from low classification performance or poor explainability. Here, we address this issue by proposing a biologically inspired architecture, Spatial Temporal-pyramid Graph Convolutional Network (STpGCN), to capture the spatial-temporal graph representation of functional brain activities. By designing multi-scale spatial-temporal pathways and bottom-up pathways that mimic the information process and temporal integration in the brain, STpGCN is capable of explicitly utilizing the multi-scale temporal dependency of brain activities via graph, thereby achieving high brain decoding performance. Additionally, we propose a sensitivity analysis method called BrainNetX to better explain the decoding results by automatically annotating task-related brain regions from the brain-network standpoint. We conduct extensive experiments on fMRI data under 23 cognitive tasks from Human Connectome Project (HCP) S1200. The results show that STpGCN significantly improves brain-decoding performance compared to competing baseline models; BrainNetX successfully annotates task-relevant brain regions. Post hoc analysis based on these regions further validates that the hierarchical structure in STpGCN significantly contributes to the explainability, robustness and generalization of the model. Our methods not only provide insights into information representation in the brain under multiple cognitive tasks but also indicate a bright future for fMRI-based brain decoding.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Conectoma/métodos , Cognição , Aprendizado de Máquina
6.
Hum Brain Mapp ; 43(8): 2683-2692, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35212436

RESUMO

Decoding brain cognitive states from neuroimaging signals is an important topic in neuroscience. In recent years, deep neural networks (DNNs) have been recruited for multiple brain state decoding and achieved good performance. However, the open question of how to interpret the DNN black box remains unanswered. Capitalizing on advances in machine learning, we integrated attention modules into brain decoders to facilitate an in-depth interpretation of DNN channels. A four-dimensional (4D) convolution operation was also included to extract temporo-spatial interaction within the fMRI signal. The experiments showed that the proposed model obtains a very high accuracy (97.4%) and outperforms previous researches on the seven different task benchmarks from the Human Connectome Project (HCP) dataset. The visualization analysis further illustrated the hierarchical emergence of task-specific masks with depth. Finally, the model was retrained to regress individual traits within the HCP and to classify viewing images from the BOLD5000 dataset, respectively. Transfer learning also achieves good performance. Further visualization analysis shows that, after transfer learning, low-level attention masks remained similar to the source domain, whereas high-level attention masks changed adaptively. In conclusion, the proposed 4D model with attention module performed well and facilitated interpretation of DNNs, which is helpful for subsequent research.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Atenção , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação
7.
Hum Brain Mapp ; 43(9): 2801-2816, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35224817

RESUMO

Functional magnetic resonance imaging (fMRI) is used to capture complex and dynamic interactions between brain regions while performing tasks. Task related alterations in the brain have been classified as task specific and task general, depending on whether they are particular to a task or common across multiple tasks. Using recent attempts in interpreting deep learning models, we propose an approach to determine both task specific and task general architectures of the functional brain. We demonstrate our methods with a reference-based decoder on deep learning classifiers trained on 12,500 rest and task fMRI samples from the Human Connectome Project (HCP). The decoded task general and task specific motor and language architectures were validated with findings from previous studies. We found that unlike intersubject variability that is characteristic of functional pathology of neurological diseases, a small set of connections are sufficient to delineate the rest and task states. The nodes and connections in the task general architecture could serve as potential disease biomarkers as alterations in task general brain modulations are known to be implicated in several neuropsychiatric disorders.


Assuntos
Conectoma , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Humanos , Idioma , Imageamento por Ressonância Magnética/métodos , Rede Nervosa , Descanso
8.
Sensors (Basel) ; 22(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015909

RESUMO

Brain decoding is a process of decoding human cognitive contents from brain activities. However, improving the accuracy of brain decoding remains difficult due to the unique characteristics of the brain, such as the small sample size and high dimensionality of brain activities. Therefore, this paper proposes a method that effectively uses multi-subject brain activities to improve brain decoding accuracy. Specifically, we distinguish between the shared information common to multi-subject brain activities and the individual information based on each subject's brain activities, and both types of information are used to decode human visual cognition. Both types of information are extracted as features belonging to a latent space using a probabilistic generative model. In the experiment, an publicly available dataset and five subjects were used, and the estimation accuracy was validated on the basis of a confidence score ranging from 0 to 1, and a large value indicates superiority. The proposed method achieved a confidence score of 0.867 for the best subject and an average of 0.813 for the five subjects, which was the best compared to other methods. The experimental results show that the proposed method can accurately decode visual cognition compared with other existing methods in which the shared information is not distinguished from the individual information.


Assuntos
Mapeamento Encefálico , Encéfalo , Cognição , Humanos , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos
9.
Neuroimage ; 231: 117847, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33582272

RESUMO

A key goal in neuroscience is to understand brain mechanisms of cognitive functions. An emerging approach is "brain decoding", which consists of inferring a set of experimental conditions performed by a participant, using pattern classification of brain activity. Few works so far have attempted to train a brain decoding model that would generalize across many different cognitive tasks drawn from multiple cognitive domains. To tackle this problem, we proposed a multidomain brain decoder that automatically learns the spatiotemporal dynamics of brain response within a short time window using a deep learning approach. We evaluated the decoding model on a large population of 1200 participants, under 21 different experimental conditions spanning six different cognitive domains, acquired from the Human Connectome Project task-fMRI database. Using a 10s window of fMRI response, the 21 cognitive states were identified with a test accuracy of 90% (chance level 4.8%). Performance remained good when using a 6s window (82%). It was even feasible to decode cognitive states from a single fMRI volume (720ms), with the performance following the shape of the hemodynamic response. Moreover, a saliency map analysis demonstrated that the high decoding performance was driven by the response of biologically meaningful brain regions. Together, we provide an automated tool to annotate human brain activity with fine temporal resolution and fine cognitive granularity. Our model shows potential applications as a reference model for domain adaptation, possibly making contributions in a variety of domains, including neurological and psychiatric disorders.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cognição/fisiologia , Aprendizado Profundo , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética/métodos
10.
Neuroimage ; 245: 118580, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740792

RESUMO

A key problem in functional magnetic resonance imaging (fMRI) is to estimate spatial activity patterns from noisy high-dimensional signals. Spatial smoothing provides one approach to regularizing such estimates. However, standard smoothing methods ignore the fact that correlations in neural activity may fall off at different rates in different brain areas, or exhibit discontinuities across anatomical or functional boundaries. Moreover, such methods do not exploit the fact that widely separated brain regions may exhibit strong correlations due to bilateral symmetry or the network organization of brain regions. To capture this non-stationary spatial correlation structure, we introduce the brain kernel, a continuous covariance function for whole-brain activity patterns. We define the brain kernel in terms of a continuous nonlinear mapping from 3D brain coordinates to a latent embedding space, parametrized with a Gaussian process (GP). The brain kernel specifies the prior covariance between voxels as a function of the distance between their locations in embedding space. The GP mapping warps the brain nonlinearly so that highly correlated voxels are close together in latent space, and uncorrelated voxels are far apart. We estimate the brain kernel using resting-state fMRI data, and we develop an exact, scalable inference method based on block coordinate descent to overcome the challenges of high dimensionality (10-100K voxels). Finally, we illustrate the brain kernel's usefulness with applications to brain decoding and factor analysis with multiple task-based fMRI datasets.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Humanos , Imageamento Tridimensional
11.
Cogn Affect Behav Neurosci ; 21(5): 936-947, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34075542

RESUMO

Despite its relevance for health and education, the neurocognitive mechanism of real-life self-control is largely unknown. While recent research revealed a prominent role of the ventromedial prefrontal cortex in the computation of an integrative value signal, the contribution and relevance of other brain regions for real-life self-control remains unclear. To investigate neural correlates of decisions in line with long-term consequences and to assess the potential of brain decoding methods for the individual prediction of real-life self-control, we combined functional magnetic resonance imaging during preference decision making with ecological momentary assessment of daily self-control in a large community sample (N = 266). Decisions in line with long-term consequences were associated with increased activity in bilateral angular gyrus and precuneus, regions involved in different forms of perspective taking, such as imagining one's own future and the perspective of others. Applying multivariate pattern analysis to the same clusters revealed that individual patterns of activity predicted the probability of real-life self-control. Brain activations are discussed in relation to episodic future thinking and mentalizing as potential mechanisms mediating real-life self-control.


Assuntos
Mapeamento Encefálico , Autocontrole , Encéfalo/diagnóstico por imagem , Tomada de Decisões , Humanos , Imageamento por Ressonância Magnética
12.
Neuroimage ; 218: 116882, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32439539

RESUMO

Neural oscillations in auditory cortex are argued to support parsing and representing speech constituents at their corresponding temporal scales. Yet, how incoming sensory information interacts with ongoing spontaneous brain activity, what features of the neuronal microcircuitry underlie spontaneous and stimulus-evoked spectral fingerprints, and what these fingerprints entail for stimulus encoding, remain largely open questions. We used a combination of human invasive electrophysiology, computational modeling and decoding techniques to assess the information encoding properties of brain activity and to relate them to a plausible underlying neuronal microarchitecture. We analyzed intracortical auditory EEG activity from 10 patients while they were listening to short sentences. Pre-stimulus neural activity in early auditory cortical regions often exhibited power spectra with a shoulder in the delta range and a small bump in the beta range. Speech decreased power in the beta range, and increased power in the delta-theta and gamma ranges. Using multivariate machine learning techniques, we assessed the spectral profile of information content for two aspects of speech processing: detection and discrimination. We obtained better phase than power information decoding, and a bimodal spectral profile of information content with better decoding at low (delta-theta) and high (gamma) frequencies than at intermediate (beta) frequencies. These experimental data were reproduced by a simple rate model made of two subnetworks with different timescales, each composed of coupled excitatory and inhibitory units, and connected via a negative feedback loop. Modeling and experimental results were similar in terms of pre-stimulus spectral profile (except for the iEEG beta bump), spectral modulations with speech, and spectral profile of information content. Altogether, we provide converging evidence from both univariate spectral analysis and decoding approaches for a dual timescale processing infrastructure in human auditory cortex, and show that it is consistent with the dynamics of a simple rate model.


Assuntos
Córtex Auditivo/fisiologia , Simulação por Computador , Percepção da Fala/fisiologia , Adulto , Eletrocorticografia , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador
13.
Hum Brain Mapp ; 41(6): 1505-1519, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816152

RESUMO

Support vector machine (SVM)-based multivariate pattern analysis (MVPA) has delivered promising performance in decoding specific task states based on functional magnetic resonance imaging (fMRI) of the human brain. Conventionally, the SVM-MVPA requires careful feature selection/extraction according to expert knowledge. In this study, we propose a deep neural network (DNN) for directly decoding multiple brain task states from fMRI signals of the brain without any burden for feature handcrafts. We trained and tested the DNN classifier using task fMRI data from the Human Connectome Project's S1200 dataset (N = 1,034). In tests to verify its performance, the proposed classification method identified seven tasks with an average accuracy of 93.7%. We also showed the general applicability of the DNN for transfer learning to small datasets (N = 43), a situation encountered in typical neuroscience research. The proposed method achieved an average accuracy of 89.0 and 94.7% on a working memory task and a motor classification task, respectively, higher than the accuracy of 69.2 and 68.6% obtained by the SVM-MVPA. A network visualization analysis showed that the DNN automatically detected features from areas of the brain related to each task. Without incurring the burden of handcrafting the features, the proposed deep decoding method can classify brain task states highly accurately, and is a powerful tool for fMRI researchers.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Aprendizado Profundo , Adulto , Conectoma , Bases de Dados Factuais , Jogo de Azar/psicologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/fisiologia , Desempenho Psicomotor/fisiologia , Reprodutibilidade dos Testes , Máquina de Vetores de Suporte , Transferência de Experiência
14.
Neuroimage ; 202: 116059, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31362049

RESUMO

Decoding brain functional states underlying cognitive processes from functional MRI (fMRI) data using multivariate pattern analysis (MVPA) techniques has achieved promising performance for characterizing brain activation patterns and providing neurofeedback signals. However, it remains challenging to decode subtly distinct brain states for individual fMRI data points due to varying temporal durations and dependency among different cognitive processes. In this study, we develop a deep learning based framework for brain decoding by leveraging recent advances in intrinsic functional network modeling and sequence modeling using long short-term memory (LSTM) recurrent neural networks (RNNs). Particularly, subject-specific intrinsic functional networks (FNs) are computed from resting-state fMRI data and are used to characterize functional signals of task fMRI data with a compact representation for building brain decoding models, and LSTM RNNs are adopted to learn brain decoding mappings between functional profiles and brain states. Validation results on fMRI data from the HCP dataset have demonstrated that brain decoding models built on training data using the proposed method could learn discriminative latent feature representations and effectively distinguish subtly distinct working memory tasks of different subjects with significantly higher accuracy than conventional decoding models. Informative FNs of the brain decoding models identified as brain activation patterns of working memory tasks were largely consistent with the literature. The method also obtained promising decoding performance on motor and social cognition tasks. Our results suggest that LSTM RNNs in conjunction with FNs could build interpretable, highly accurate brain decoding models.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiologia , Redes Neurais de Computação , Adulto , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem
15.
Neuroimage ; 180(Pt A): 88-100, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28793239

RESUMO

The application of machine learning methods to neuroimaging data has fundamentally altered the field of cognitive neuroscience. Future progress in understanding brain function using these methods will require addressing a number of key methodological and interpretive challenges. Because these challenges often remain unseen and metaphorically "haunt" our efforts to use these methods to understand the brain, we refer to them as "ghosts". In this paper, we describe three such ghosts, situate them within a more general framework from philosophy of science, and then describe steps to address them. The first ghost arises from difficulties in determining what information machine learning classifiers use for decoding. The second ghost arises from the interplay of experimental design and the structure of information in the brain - that is, our methods embody implicit assumptions about information processing in the brain, and it is often difficult to determine if those assumptions are satisfied. The third ghost emerges from our limited ability to distinguish information that is merely decodable from the brain from information that is represented and used by the brain. Each of the three ghosts place limits on the interpretability of decoding research in cognitive neuroscience. There are no easy solutions, but facing these issues squarely will provide a clearer path to understanding the nature of representation and computation in the human brain.


Assuntos
Mapeamento Encefálico/métodos , Neurociência Cognitiva/métodos , Aprendizado de Máquina , Humanos , Análise Multivariada
16.
Neuroimage ; 162: 322-343, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28882629

RESUMO

Investigations of the neural basis of consciousness have greatly benefited from protocols that involve the presentation of stimuli at perceptual threshold, enabling the assessment of the patterns of brain activity that correlate with conscious perception, independently of any changes in sensory input. However, the comparison between perceived and unperceived trials would be expected to reveal not only the core neural substrate of a particular conscious perception, but also aspects of brain activity that facilitate, hinder or tend to follow conscious perception. We take a step towards the resolution of these confounds by combining an analysis of neural responses observed during the presentation of faces partially masked by Continuous Flash Suppression, and those responses observed during the unmasked presentation of faces and other images in the same subjects. We employed multidimensional classifiers to decode physical properties of stimuli or perceptual states from spectrotemporal representations of electrocorticographic signals (1071 channels in 5 subjects). Neural activity in certain face responsive areas located in both the fusiform gyrus and in the lateral-temporal/inferior-parietal cortex discriminated seen vs. unseen faces in the masked paradigm and upright faces vs. other categories in the unmasked paradigm. However, only the former discriminated upright vs. inverted faces in the unmasked paradigm. Our results suggest a prominent role for the fusiform gyrus in the configural perception of faces, and possibly other objects that are holistically processed. More generally, we advocate comparative analysis of neural recordings obtained during different, but related, experimental protocols as a promising direction towards elucidating the functional specificities of the patterns of neural activation that accompany our conscious experiences.


Assuntos
Estado de Consciência/fisiologia , Reconhecimento Facial/fisiologia , Mascaramento Perceptivo/fisiologia , Adulto , Mapeamento Encefálico/métodos , Eletrocorticografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Lobo Temporal/fisiologia
17.
Stat Med ; 35(24): 4380-4397, 2016 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-27222305

RESUMO

Recent advances in human neuroimaging have shown that it is possible to accurately decode how the brain perceives information based only on non-invasive functional magnetic resonance imaging measurements of brain activity. Two commonly used statistical approaches, namely, univariate analysis and multivariate pattern analysis often lead to distinct patterns of selected voxels. One current debate in brain decoding concerns whether the brain's representation of sound categories is localized or distributed. We hypothesize that the distributed pattern of voxels selected by most multivariate pattern analysis models can be an artifact due to the spatial correlation among voxels. Here, we propose a Bayesian spatially varying coefficient model, where the spatial correlation is modeled through the variance-covariance matrix of the model coefficients. Combined with a proposed region selection strategy, we demonstrate that our approach is effective in identifying the truly localized patterns of the voxels while maintaining robustness to discover truly distributed pattern. In addition, we show that localized or clustered patterns can be artificially identified as distributed if without proper usage of the spatial correlation information in fMRI data. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Teorema de Bayes , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo , Humanos , Análise Multivariada
18.
Neuroimage ; 116: 248-54, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25918034

RESUMO

The "ten ironic rules for statistical reviewers" presented by Friston (2012) prompted a rebuttal by Lindquist et al. (2013), which was followed by a rejoinder by Friston (2013). A key issue left unresolved in this discussion is the use of cross-validation to test the significance of predictive analyses. This note discusses the role that cross-validation-based and related hypothesis tests have come to play in modern data analyses, in neuroimaging and other fields. It is shown that such tests need not be suboptimal and can fill otherwise-unmet inferential needs.


Assuntos
Neuroimagem , Revisão da Pesquisa por Pares/métodos , Projetos de Pesquisa , Estatística como Assunto/métodos
19.
J Neural Eng ; 21(4)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38885689

RESUMO

Objective.Brain decoding is a field of computational neuroscience that aims to infer mental states or internal representations of perceptual inputs from measurable brain activity. This study proposes a novel approach to brain decoding that relies on semantic and contextual similarity.Approach.We use several functional magnetic resonance imaging (fMRI) datasets of natural images as stimuli and create a deep learning decoding pipeline inspired by the bottom-up and top-down processes in human vision. Our pipeline includes a linear brain-to-feature model that maps fMRI activity to semantic visual stimuli features. We assume that the brain projects visual information onto a space that is homeomorphic to the latent space of last layer of a pretrained neural network, which summarizes and highlights similarities and differences between concepts. These features are categorized in the latent space using a nearest-neighbor strategy, and the results are used to retrieve images or condition a generative latent diffusion model to create novel images.Main results.We demonstrate semantic classification and image retrieval on three different fMRI datasets: Generic Object Decoding (vision perception and imagination), BOLD5000, and NSD. In all cases, a simple mapping between fMRI and a deep semantic representation of the visual stimulus resulted in meaningful classification and retrieved or generated images. We assessed quality using quantitative metrics and a human evaluation experiment that reproduces the multiplicity of conscious and unconscious criteria that humans use to evaluate image similarity. Our method achieved correct evaluation in over 80% of the test set.Significance.Our study proposes a novel approach to brain decoding that relies on semantic and contextual similarity. The results demonstrate that measurable neural correlates can be linearly mapped onto the latent space of a neural network to synthesize images that match the original content. These findings have implications for both cognitive neuroscience and artificial intelligence.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Percepção Visual/fisiologia , Modelos Neurológicos , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Estimulação Luminosa/métodos , Mapeamento Encefálico/métodos , Semântica
20.
Neural Netw ; 170: 349-363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016230

RESUMO

Visual images observed by humans can be reconstructed from their brain activity. However, the visualization (externalization) of mental imagery is challenging. Only a few studies have reported successful visualization of mental imagery, and their visualizable images have been limited to specific domains such as human faces or alphabetical letters. Therefore, visualizing mental imagery for arbitrary natural images stands as a significant milestone. In this study, we achieved this by enhancing a previous method. Specifically, we demonstrated that the visual image reconstruction method proposed in the seminal study by Shen et al. (2019) heavily relied on low-level visual information decoded from the brain and could not efficiently utilize the semantic information that would be recruited during mental imagery. To address this limitation, we extended the previous method to a Bayesian estimation framework and introduced the assistance of semantic information into it. Our proposed framework successfully reconstructed both seen images (i.e., those observed by the human eye) and imagined images from brain activity. Quantitative evaluation showed that our framework could identify seen and imagined images highly accurately compared to the chance accuracy (seen: 90.7%, imagery: 75.6%, chance accuracy: 50.0%). In contrast, the previous method could only identify seen images (seen: 64.3%, imagery: 50.4%). These results suggest that our framework would provide a unique tool for directly investigating the subjective contents of the brain such as illusions, hallucinations, and dreams.


Assuntos
Mapeamento Encefálico , Imaginação , Humanos , Teorema de Bayes , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA