Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neuroimage ; 271: 120041, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933626

RESUMO

Brain lesion segmentation provides a valuable tool for clinical diagnosis and research, and convolutional neural networks (CNNs) have achieved unprecedented success in the segmentation task. Data augmentation is a widely used strategy to improve the training of CNNs. In particular, data augmentation approaches that mix pairs of annotated training images have been developed. These methods are easy to implement and have achieved promising results in various image processing tasks. However, existing data augmentation approaches based on image mixing are not designed for brain lesions and may not perform well for brain lesion segmentation. Thus, the design of this type of simple data augmentation method for brain lesion segmentation is still an open problem. In this work, we propose a simple yet effective data augmentation approach, dubbed as CarveMix, for CNN-based brain lesion segmentation. Like other mixing-based methods, CarveMix stochastically combines two existing annotated images (annotated for brain lesions only) to obtain new labeled samples. To make our method more suitable for brain lesion segmentation, CarveMix is lesion-aware, where the image combination is performed with a focus on the lesions and preserves the lesion information. Specifically, from one annotated image we carve a region of interest (ROI) according to the lesion location and geometry with a variable ROI size. The carved ROI then replaces the corresponding voxels in a second annotated image to synthesize new labeled images for network training, and additional harmonization steps are applied for heterogeneous data where the two annotated images can originate from different sources. Besides, we further propose to model the mass effect that is unique to whole brain tumor segmentation during image mixing. To evaluate the proposed method, experiments were performed on multiple publicly available or private datasets, and the results show that our method improves the accuracy of brain lesion segmentation. The code of the proposed method is available at https://github.com/ZhangxinruBIT/CarveMix.git.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Encéfalo
2.
Appl Intell (Dordr) ; 52(7): 7320-7338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34764620

RESUMO

Traumatic Brain Injury (TBI) could lead to intracranial hemorrhage (ICH), which has now been identified as a major cause of death after trauma if it is not adequately diagnosed and properly treated within the first 24 hours. CT examination is widely preferred for urgent ICH diagnosis, which enables the fast identification and detection of ICH regions. However, the use of it requires the clinical interpretation by experts to identify the subtypes of ICH. Besides, it is unable to provide the details needed to conduct quantitative assessment, such as the volume and thickness of hemorrhagic lesions, which may have prognostic importance to the decision-making on emergency treatment. In this paper, an optimal deep learning framework is proposed to assist the quantitative assessment for ICH diagnosis and the accurate detection of different subtypes of ICH through head CT scan. Firstly, the format of raw input data is converted from 3D DICOM to NIfTI. Secondly, a pre-trained multi-class semantic segmentation model is applied to each slice of CT images, so as to obtain a precise 3D mask of the whole ICH region. Thirdly, a fine-tuned classification neural network is employed to extract the key features from the raw input data and identify the subtypes of ICH. Finally, a quantitative assessment algorithm is adopted to automatically measure both thickness and volume via the 3D shape mask combined with the output probabilities of the classification network. The results of our extensive experiments demonstrate the effectiveness of the proposed framework where the average accuracy of 96.21 percent is achieved for three types of hemorrhage. The capability of our optimal classification model to distinguish between different types of lesion plays a significant role in reducing the false-positive rate in the existing work. Furthermore, the results suggest that our automatic quantitative assessment algorithm is effective in providing clinically relevant quantification in terms of volume and thickness. It is more important than the qualitative assessment conducted through visual inspection to the decision-making on emergency surgical treatment.

3.
Neuroimage ; 244: 118568, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508895

RESUMO

The annotation of brain lesion images is a key step in clinical diagnosis and treatment of a wide spectrum of brain diseases. In recent years, segmentation methods based on deep learning have gained unprecedented popularity, leveraging a large amount of data with high-quality voxel-level annotations. However, due to the limited time clinicians can provide for the cumbersome task of manual image segmentation, semi-supervised medical image segmentation methods present an alternative solution as they require only a few labeled samples for training. In this paper, we propose a novel semi-supervised segmentation framework that combines improved mean teacher and adversarial network. Specifically, our framework consists of (i) a student model and a teacher model for segmenting the target and generating the signed distance maps of object surfaces, and (ii) a discriminator network for extracting hierarchical features and distinguishing the signed distance maps of labeled and unlabeled data. Besides, based on two different adversarial learning processes, a multi-scale feature consistency loss derived from the student and teacher models is proposed, and a shape-aware embedding scheme is integrated into our framework. We evaluated the proposed method on the public brain lesion datasets from ISBI 2015, ISLES 2015, and BRATS 2018 for the multiple sclerosis lesion, ischemic stroke lesion, and brain tumor segmentation respectively. Experiments demonstrate that our method can effectively leverage unlabeled data while outperforming the supervised baseline and other state-of-the-art semi-supervised methods trained with the same labeled data. The proposed framework is suitable for joint training of limited labeled data and additional unlabeled data, which is expected to reduce the effort of obtaining annotated images.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Esclerose Múltipla/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Conjuntos de Dados como Assunto , Humanos , Imageamento por Ressonância Magnética , Projetos de Pesquisa , Estudantes
4.
AJR Am J Roentgenol ; 212(1): 26-37, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30332296

RESUMO

OBJECTIVE: Machine learning has recently gained considerable attention because of promising results for a wide range of radiology applications. Here we review recent work using machine learning in brain tumor imaging, specifically segmentation and MRI radiomics of gliomas. CONCLUSION: We discuss available resources, state-of-the-art segmentation methods, and machine learning radiomics for glioma. We highlight the challenges of these techniques as well as the future potential in clinical diagnostics, prognostics, and decision making.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Aprendizado de Máquina , Previsões , Humanos , Interpretação de Imagem Assistida por Computador , Planejamento de Assistência ao Paciente , Prognóstico
5.
Neuroimage ; 183: 650-665, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30125711

RESUMO

White matter hyperintensities (WMH) are commonly found in the brains of healthy elderly individuals and have been associated with various neurological and geriatric disorders. In this paper, we present a study using deep fully convolutional network and ensemble models to automatically detect such WMH using fluid attenuation inversion recovery (FLAIR) and T1 magnetic resonance (MR) scans. The algorithm was evaluated and ranked 1st in the WMH Segmentation Challenge at MICCAI 2017. In the evaluation stage, the implementation of the algorithm was submitted to the challenge organizers, who then independently tested it on a hidden set of 110 cases from 5 scanners. Averaged dice score, precision and robust Hausdorff distance obtained on held-out test datasets were 80%, 84% and 6.30 mm respectively. These were the highest achieved in the challenge, suggesting the proposed method is the state-of-the-art. Detailed descriptions and quantitative analysis on key components of the system were provided. Furthermore, a study of cross-scanner evaluation is presented to discuss how the combination of modalities affect the generalization capability of the system. The adaptability of the system to different scanners and protocols is also investigated. A quantitative study is further presented to show the effect of ensemble size and the effectiveness of the ensemble model. Additionally, software and models of our method are made publicly available. The effectiveness and generalization capability of the proposed system show its potential for real-world clinical practice.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Substância Branca/diagnóstico por imagem , Conjuntos de Dados como Assunto , Humanos
6.
J Digit Imaging ; 30(4): 449-459, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28577131

RESUMO

Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Encéfalo/anatomia & histologia , Previsões , Humanos , Aprendizado de Máquina/tendências
7.
Front Neurosci ; 18: 1363930, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680446

RESUMO

Introduction: In neurological diagnostics, accurate detection and segmentation of brain lesions is crucial. Identifying these lesions is challenging due to its complex morphology, especially when using traditional methods. Conventional methods are either computationally demanding with a marginal impact/enhancement or sacrifice fine details for computational efficiency. Therefore, balancing performance and precision in compute-intensive medical imaging remains a hot research topic. Methods: We introduce a novel encoder-decoder network architecture named the Adaptive Feature Medical Segmentation Network (AFMS-Net) with two encoder variants: the Single Adaptive Encoder Block (SAEB) and the Dual Adaptive Encoder Block (DAEB). A squeeze-and-excite mechanism is employed in SAEB to identify significant data while disregarding peripheral details. This approach is best suited for scenarios requiring quick and efficient segmentation, with an emphasis on identifying key lesion areas. In contrast, the DAEB utilizes an advanced channel spatial attention strategy for fine-grained delineation and multiple-class classifications. Additionally, both architectures incorporate a Segmentation Path (SegPath) module between the encoder and decoder, refining segmentation, enhancing feature extraction, and improving model performance and stability. Results: AFMS-Net demonstrates exceptional performance across several notable datasets, including BRATs 2021, ATLAS 2021, and ISLES 2022. Its design aims to construct a lightweight architecture capable of handling complex segmentation challenges with high precision. Discussion: The proposed AFMS-Net addresses the critical balance issue between performance and computational efficiency in the segmentation of brain lesions. By introducing two tailored encoder variants, the network adapts to varying requirements of speed and feature. This approach not only advances the state-of-the-art in lesion segmentation but also provides a scalable framework for future research in medical image processing.

8.
Comput Med Imaging Graph ; 88: 101842, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33387812

RESUMO

Convolutional neural networks (CNNs) have become an increasingly popular tool for brain lesion segmentation in recent years due to its accuracy and efficiency. However, CNN-based brain lesion segmentation generally requires a large amount of annotated training data, which can be costly for medical imaging. In many scenarios, only a few annotations of brain lesions are available. One common strategy to address the issue of limited annotated data is to transfer knowledge from a different yet relevant source task, where training data is abundant, to the target task of interest. Typically, a model can be pretrained for the source task, and then fine-tuned with the scarce training data associated with the target task. However, classic fine-tuning tends to make small modifications to the pretrained model, which could hinder its adaptation to the target task. Fine-tuning with increased model capacity has been shown to alleviate this negative impact in image classification problems. In this work, we extend the strategy of fine-tuning with increased model capacity to the problem of brain lesion segmentation, and then develop an advanced version that is better suitable for segmentation problems. First, we propose a vanilla strategy of increasing the capacity, where, like in the classification problem, the width of the network is augmented during fine-tuning. Second, because unlike image classification, in segmentation problems each voxel is associated with a labeling result, we further develop a spatially adaptive augmentation strategy during fine-tuning. Specifically, in addition to the vanilla width augmentation, we incorporate a module that computes a spatial map of the contribution of the information given by width augmentation in the final segmentation. For demonstration, the proposed method was applied to ischemic stroke lesion segmentation, where a model pretrained for brain tumor segmentation was fine-tuned, and the experimental results indicate the benefit of our method.


Assuntos
Neoplasias Encefálicas , Redes Neurais de Computação , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Diagnóstico por Imagem , Humanos , Processamento de Imagem Assistida por Computador
9.
Front Neurol ; 10: 541, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178820

RESUMO

Robust and reliable stroke lesion segmentation is a crucial step toward employing lesion volume as an independent endpoint for randomized trials. The aim of this work was to develop and evaluate a novel method to segment sub-acute ischemic stroke lesions from fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) datasets. After preprocessing of the datasets, a Bayesian technique based on Gabor textures extracted from the FLAIR signal intensities is utilized to generate a first estimate of the lesion segmentation. Using this initial segmentation, a customized voxel-level Markov random field model based on intensity as well as Gabor texture features is employed to refine the stroke lesion segmentation. The proposed method was developed and evaluated based on 151 multi-center datasets from three different databases using a leave-one-patient-out validation approach. The comparison of the automatically segmented stroke lesions with manual ground truth segmentation revealed an average Dice coefficient of 0.582, which is in the upper range of previously presented lesion segmentation methods using multi-modal MRI datasets. Furthermore, the results obtained by the proposed technique are superior compared to the results obtained by two methods based on convolutional neural networks and three phase level-sets, respectively, which performed best in the ISLES 2015 challenge using multi-modal imaging datasets. The results of the quantitative evaluation suggest that the proposed method leads to robust lesion segmentation results using FLAIR MRI datasets only as a follow-up sequence.

10.
Front Neurosci ; 13: 844, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496928

RESUMO

Automatic segmentation methods based on deep learning have recently demonstrated state-of-the-art performance, outperforming the ordinary methods. Nevertheless, these methods are inapplicable for small datasets, which are very common in medical problems. To this end, we propose a knowledge transfer method between diseases via the Generative Bayesian Prior network. Our approach is compared to a pre-train approach and random initialization and obtains the best results in terms of Dice Similarity Coefficient metric for the small subsets of the Brain Tumor Segmentation 2018 database (BRATS2018).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA