Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cancer ; 19(1): 29, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32059676

RESUMO

Brain metastasis (BM) predominantly occurs in triple-negative (TN) and epidermal growth factor 2 (HER2)-positive breast cancer (BC) patients, and currently, there is an unmet need for the treatment of these patients. BM is a complex process that is regulated by the formation of a metastatic niche. A better understanding of the brain metastatic processes and the crosstalk between cancer cells and brain microenvironment is essential for designing a novel therapeutic approach. In this context, the aberrant expression of miRNA has been shown to be associated with BM. These non-coding RNAs/miRNAs regulate metastasis through modulating the formation of a metastatic niche and metabolic reprogramming via regulation of their target genes. However, the role of miRNA in breast cancer brain metastasis (BCBM) is poorly explored. Thus, identification and understanding of miRNAs in the pathobiology of BCBM may identify a novel candidate miRNA for the early diagnosis and prevention of this devastating process. In this review, we focus on understanding the role of candidate miRNAs in the regulation of BC brain metastatic processes as well as designing novel miRNA-based therapeutic strategies for BCBM.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Terapia de Alvo Molecular , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Feminino , Humanos
2.
Glia ; 67(6): 1179-1195, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30720218

RESUMO

Growing interest has been focused on the roles of microglia as sentinels and effector cells that guard diverse pathological milieu in the brain. Here, it has been reported that microglial TLR2 is a crucial molecule that confers innate and adaptive immunity against brain tumor. TLR2 is preferentially expressed on microglia, brain-resident immune cells, in the tumor-bearing cerebral hemisphere of mouse and rat intracranial tumor models. Microglial TLR2 rapidly responds to brain tumor and modulates the inflammation-associated immune responses including phagocytosis, which are markedly decreased in TLR2-deficient mice. We further reveal that TLR2, but not TLR4, is essential for the tumor-triggered increase of MHC I in microglia. in vitro co-culture and in vivo experiments show that the glial TLR2-MHC I axis contributes to the proliferation and activation of CD8+ T cells by brain tumor. In addition, brain tumor-bearing ß2m-/- , Tlr2-/- , or Rag2 -/- γc -/- mice exhibit higher tumor volumes compared with WT mice with tumor. Survival analysis of GL26-bearing MHC I-defective mice also support the contribution of glial TLR2-MHC I axis to brain tumor immunity. Moreover, using publicly available data sets of human brain tumor patients, we find that glioblastoma (GBM) tissues with high TLR2 level have similar co-occurrence patterns with MHC I molecules, and the amounts and activity of infiltrating CD8+ T cells are correlated with TLR2 level in tissues from GBM patients. Collectively, our findings provide the importance of glial TLR2-driven innate and adaptive immune responses in the brain tumor microenvironment.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/prevenção & controle , Imunidade Inata/fisiologia , Neuroglia/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Neoplasias Encefálicas/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/imunologia , Ratos , Ratos Sprague-Dawley , Receptor 2 Toll-Like/imunologia , Células Tumorais Cultivadas
3.
Acta Neuropathol Commun ; 12(1): 15, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254244

RESUMO

Brain metastases occur in 1% of sarcoma cases and are associated with a median overall survival of 6 months. We report a rare case of a brain metastasis with unique radiologic and histopathologic features in a patient with low grade fibromyxoid sarcoma (LGFMS) previously treated with immune checkpoint inhibitor (ICI) therapy. The lone metastasis progressed in the midbrain tegmentum over 15 months as a non-enhancing, T2-hyperintense lesion with peripheral diffusion restriction, mimicking a demyelinating lesion. Histopathology of the lesion at autopsy revealed a rich infiltrate of tumor-associated macrophages (TAMs) with highest density at the leading edge of the metastasis, whereas there was a paucity of lymphocytes, suggestive of an immunologically cold environment. Given the important immunosuppressive and tumor-promoting functions of TAMs in gliomas and carcinoma/melanoma brain metastases, this unusual case provides an interesting example of a dense TAM infiltrate in a much rarer sarcoma brain metastasis.


Assuntos
Neoplasias Encefálicas , Glioma , Sarcoma , Humanos , Macrófagos Associados a Tumor , Encéfalo , Microambiente Tumoral
4.
Front Genet ; 14: 1135404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968588

RESUMO

Medulloblastoma (MB) is a highly malignant childhood tumor of the cerebellum. Transcriptional and epigenetic signatures have classified MB into four molecular subgroups, further stratified into biologically different subtypes with distinct somatic copy-number aberrations, driver genes, epigenetic alterations, activated pathways, and clinical outcomes. The brain tumor microenvironment (BTME) is of importance to regulate a complex network of cells, including immune cells, involved in cancer progression in brain malignancies. MB was considered with a "cold" immunophenotype due to the low influx of immune cells across the blood brain barrier (BBB). Recently, this assumption has been reconsidered because of the identification of infiltrating immune cells showing immunosuppressive phenotypes in the BTME of MB tumors. Here, we are providing a comprehensive overview of the current status of epigenetics alterations occurring during cancer progression with a description of the genomic landscape of MB by focusing on immune cells within the BTME. We further describe how new immunotherapeutic approaches could influence concurring epigenetic mechanisms of the immunosuppressive cells in BTME. In conclusion, the modulation of these molecular genetic complexes in BTME during cancer progression might enhance the therapeutic benefit, thus firing new weapons to fight MB.

5.
Front Oncol ; 12: 921975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847909

RESUMO

Gliomas are known as an incurable brain tumor for the poor prognosis and robust recurrence. In recent years, a cellular subpopulation with tumor microtubes (TMs) was identified in brain tumors, which may provide a new angle to explain the invasion, resistance, recurrence, and heterogeneity of gliomas. Recently, it was demonstrated that the cell subpopulation also expresses neural stem cell markers and shares a lot of features with both immature neurons and cancer stem cells and may be seen as an improperly reactivated neural cell network with a stemness feature at later time points of life. TMs may also provide a new angle to understand the resistance and recurrence mechanisms of glioma stem cells. In this review, we innovatively focus on the common features between TMs and sprouting axons in morphology, formation, and function. Additionally, we summarized the recent progress in the resistance and recurrence mechanisms of gliomas with TMs and explained the incurability and heterogeneity in gliomas with TMs. Moreover, we discussed the recently discovered overlap between cancer stem cells and TM-positive glioma cells, which may contribute to the understanding of resistant glioma cell subpopulation and the exploration of the new potential therapeutic target for gliomas.

6.
Cancers (Basel) ; 13(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34680209

RESUMO

Primary central nervous system lymphoma (PCNSL) is, mainly, a diffuse large B-cell lymphoma (DLBCL) with a non-germinal center B-cell (non-GCB) origin. It is associated with a poor prognosis and an unmet medical need. Immunotherapy has emerged as one of the most promising areas of research and is now part of the standard treatment for many solid and hematologic tumors. This new class of therapy generated great enthusiasm for the treatment of relapsed/refractory PCNSL. Here, we discuss the challenges of immunotherapy for PCNSL represented by the lymphoma cell itself and the specific immune brain microenvironment. We review the current clinical development from the anti-CD20 monoclonal antibody to CAR-T cells, as well as immune checkpoint inhibitors and targeted therapies with off-tumor effects on the brain microenvironment. Perspectives for improving the efficacy of immunotherapies and optimizing their therapeutic role in PCNSL are suggested.

7.
Crit Rev Oncol Hematol ; 163: 103390, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34090998

RESUMO

The introduction of checkpoint inhibitors (ICIs) in renal cell carcinoma (RCC) treatment landscape, resulted in improvements in overall survival (OS) in metastatic patients. Brain metastases (BMs) are a specific metastatic site of interest representing a predictive factor of poor prognosis. Patients with BMs were usually excluded from prospective clinical trials in the past. Despite recent evidence suggest the efficacy and safety of ICIs, the BMs treatment remains a challenge; the immunotherapy responsiveness seems to be multifactorial and dependent on several factors, such as the genetic intratumor heterogeneity and the immunosuppressive role of the brain tumor microenvironment. This review, starting from the immunological background in RCC BMs, provide an overview of the upcoming evidence from clinical trials, address the issues related to the neuroradiological immunotherapy response evaluation and, with a look to the future, describes how the epigenetic modulation of immune evasion could represent a background for new therapeutic strategies.


Assuntos
Neoplasias Encefálicas , Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Encefálicas/tratamento farmacológico , Carcinoma de Células Renais/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Renais/tratamento farmacológico , Estudos Prospectivos , Microambiente Tumoral
8.
Cell Syst ; 12(3): 248-262.e7, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33592194

RESUMO

Aggressive brain tumors like glioblastoma depend on support by their local environment and subsets of tumor parenchymal cells may promote specific phases of disease progression. We investigated the glioblastoma microenvironment with transgenic lineage-tracing models, intravital imaging, single-cell transcriptomics, immunofluorescence analysis as well as histopathology and characterized a previously unacknowledged population of tumor-associated cells with a myeloid-like expression profile (TAMEP) that transiently appeared during glioblastoma growth. TAMEP of mice and humans were identified with specific markers. Notably, TAMEP did not derive from microglia or peripheral monocytes but were generated by a fraction of CNS-resident, SOX2-positive progenitors. Abrogation of this progenitor cell population, by conditional Sox2-knockout, drastically reduced glioblastoma vascularization and size. Hence, TAMEP emerge as a tumor parenchymal component with a strong impact on glioblastoma progression.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Células Mieloides/patologia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Masculino , Camundongos , Tecido Parenquimatoso/irrigação sanguínea , Tecido Parenquimatoso/patologia
9.
Cancer Cell ; 31(3): 326-341, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28292436

RESUMO

The brain tumor microenvironment (TME) is emerging as a critical regulator of cancer progression in primary and metastatic brain malignancies. The unique properties of this organ require a specific framework for designing TME-targeted interventions. Here, we discuss a number of these distinct features, including brain-resident cell types, the blood-brain barrier, and various aspects of the immune-suppressive environment. We also highlight recent advances in therapeutically targeting the brain TME in cancer. By developing a comprehensive understanding of the complex and interconnected microenvironmental landscape of brain malignancies we will greatly expand the range of therapeutic strategies available to target these deadly diseases.


Assuntos
Neoplasias Encefálicas/imunologia , Microambiente Tumoral , Barreira Hematoencefálica , Neoplasias Encefálicas/terapia , Células Dendríticas/fisiologia , Humanos , Macrófagos/fisiologia , Microglia/fisiologia , Neovascularização Fisiológica , Neutrófilos/fisiologia , Linfócitos T/imunologia , Cicatrização
10.
J Neuroimmunol ; 274(1-2): 71-7, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25042352

RESUMO

Factors released by glioma-associated microglia/macrophages (GAMs) play an important role in the growth and infiltration of tumors. We have previously demonstrated that the co-chaperone stress-inducible protein 1 (STI1) secreted by microglia promotes proliferation and migration of human glioblastoma (GBM) cell lines in vitro. In the present study, in order to investigate the role of STI1 in a physiological context, we used a glioma model to evaluate STI1 expression in vivo. Here, we demonstrate that STI1 expression in both the tumor and in the infiltrating GAMs and lymphocytes significantly increased with tumor progression. Interestingly, high expression of STI1 was observed in macrophages and lymphocytes that infiltrated brain tumors, whereas STI1 expression in the circulating blood monocytes and lymphocytes remained unchanged. Our results correlate, for the first time, the expression of STI1 and glioma progression, and suggest that STI1 expression in GAMs and infiltrating lymphocytes is modulated by the brain tumor microenvironment.


Assuntos
Neoplasias Encefálicas/imunologia , Glioma/imunologia , Proteínas de Choque Térmico/imunologia , Macrófagos/imunologia , Microglia/imunologia , Animais , Neoplasias Encefálicas/metabolismo , Receptor 1 de Quimiocina CX3C , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Citometria de Fluxo , Expressão Gênica/imunologia , Glioma/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Quimiocinas/genética , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA