Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.887
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(8): 2239-2254.e39, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831375

RESUMO

Intra-tumor heterogeneity (ITH) is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the extent, origin, and drivers of ITH across cancer types are poorly understood. To address this, we extensively characterize ITH across whole-genome sequences of 2,658 cancer samples spanning 38 cancer types. Nearly all informative samples (95.1%) contain evidence of distinct subclonal expansions with frequent branching relationships between subclones. We observe positive selection of subclonal driver mutations across most cancer types and identify cancer type-specific subclonal patterns of driver gene mutations, fusions, structural variants, and copy number alterations as well as dynamic changes in mutational processes between subclonal expansions. Our results underline the importance of ITH and its drivers in tumor evolution and provide a pan-cancer resource of comprehensively annotated subclonal events from whole-genome sequencing data.


Assuntos
Heterogeneidade Genética , Neoplasias/genética , Variações do Número de Cópias de DNA , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , Bases de Dados Genéticas , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
2.
Cell ; 184(14): 3702-3716.e30, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34133940

RESUMO

Many embryonic organs undergo epithelial morphogenesis to form tree-like hierarchical structures. However, it remains unclear what drives the budding and branching of stratified epithelia, such as in the embryonic salivary gland and pancreas. Here, we performed live-organ imaging of mouse embryonic salivary glands at single-cell resolution to reveal that budding morphogenesis is driven by expansion and folding of a distinct epithelial surface cell sheet characterized by strong cell-matrix adhesions and weak cell-cell adhesions. Profiling of single-cell transcriptomes of this epithelium revealed spatial patterns of transcription underlying these cell adhesion differences. We then synthetically reconstituted budding morphogenesis by experimentally suppressing E-cadherin expression and inducing basement membrane formation in 3D spheroid cultures of engineered cells, which required ß1-integrin-mediated cell-matrix adhesion for successful budding. Thus, stratified epithelial budding, the key first step of branching morphogenesis, is driven by an overall combination of strong cell-matrix adhesion and weak cell-cell adhesion by peripheral epithelial cells.


Assuntos
Junções Célula-Matriz/metabolismo , Morfogênese , Animais , Membrana Basal/metabolismo , Adesão Celular , Divisão Celular , Movimento Celular , Rastreamento de Células , Embrião de Mamíferos/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Integrinas/metabolismo , Camundongos , Modelos Biológicos , Glândulas Salivares/citologia , Glândulas Salivares/embriologia , Glândulas Salivares/metabolismo , Transcriptoma/genética
3.
Annu Rev Cell Dev Biol ; 38: 1-23, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759800

RESUMO

The microtubule (MT) cytoskeleton provides the architecture that governs intracellular organization and the regulated motion of macromolecules through the crowded cytoplasm. The key to establishing a functioning cytoskeletal architecture is regulating when and where new MTs are nucleated. Within the spindle, the vast majority of MTs are generated through a pathway known as branching MT nucleation, which exponentially amplifies MT number in a polar manner. Whereas other MT nucleation pathways generally require a complex organelle such as the centrosome or Golgi apparatus to localize nucleation factors, the branching site is based solely on a simple, preformed MT, making it an ideal system to study MT nucleation. In this review, we address recent developments in characterizing branching factors, the branching reaction, and its regulation, as well as branching MT nucleation in systems beyond the spindle and within human disease.


Assuntos
Centro Organizador dos Microtúbulos , Fuso Acromático , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
4.
Annu Rev Biochem ; 89: 333-358, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31815536

RESUMO

Splicing of the precursor messenger RNA, involving intron removal and exon ligation, is mediated by the spliceosome. Together with biochemical and genetic investigations of the past four decades, structural studies of the intact spliceosome at atomic resolution since 2015 have led to mechanistic delineation of RNA splicing with remarkable insights. The spliceosome is proven to be a protein-orchestrated metalloribozyme. Conserved elements of small nuclear RNA (snRNA) constitute the splicing active site with two catalytic metal ions and recognize three conserved intron elements through duplex formation, which are delivered into the splicing active site for branching and exon ligation. The protein components of the spliceosome stabilize the conformation of the snRNA, drive spliceosome remodeling, orchestrate the movement of the RNA elements, and facilitate the splicing reaction. The overall organization of the spliceosome and the configuration of the splicing active site are strictly conserved between human and yeast.


Assuntos
Fatores de Processamento de RNA/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Spliceossomos/metabolismo , Domínio Catalítico , Sequência Conservada , Éxons , Humanos , Íntrons , Modelos Moleculares , Conformação de Ácido Nucleico , Estrutura Secundária de Proteína , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/genética , Spliceossomos/ultraestrutura
5.
Cell ; 179(1): 132-146.e14, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31522887

RESUMO

Oligodendrocytes extend elaborate microtubule arbors that contact up to 50 axon segments per cell, then spiral around myelin sheaths, penetrating from outer to inner layers. However, how they establish this complex cytoarchitecture is unclear. Here, we show that oligodendrocytes contain Golgi outposts, an organelle that can function as an acentrosomal microtubule-organizing center (MTOC). We identify a specific marker for Golgi outposts-TPPP (tubulin polymerization promoting protein)-that we use to purify this organelle and characterize its proteome. In in vitro cell-free assays, recombinant TPPP nucleates microtubules. Primary oligodendrocytes from Tppp knockout (KO) mice have aberrant microtubule branching, mixed microtubule polarity, and shorter myelin sheaths when cultured on 3-dimensional (3D) microfibers. Tppp KO mice exhibit hypomyelination with shorter, thinner myelin sheaths and motor coordination deficits. Together, our data demonstrate that microtubule nucleation outside the cell body at Golgi outposts by TPPP is critical for elongation of the myelin sheath.


Assuntos
Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Microtúbulos/metabolismo , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Proteínas de Transporte/genética , Sistema Livre de Células/metabolismo , Células Cultivadas , Escherichia coli/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Centro Organizador dos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Células Precursoras de Oligodendrócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Tubulina (Proteína)/metabolismo
6.
Cell ; 179(6): 1409-1423.e17, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31778655

RESUMO

The evolution of flight in feathered dinosaurs and early birds over millions of years required flight feathers whose architecture features hierarchical branches. While barb-based feather forms were investigated, feather shafts and vanes are understudied. Here, we take a multi-disciplinary approach to study their molecular control and bio-architectural organizations. In rachidial ridges, epidermal progenitors generate cortex and medullary keratinocytes, guided by Bmp and transforming growth factor ß (TGF-ß) signaling that convert rachides into adaptable bilayer composite beams. In barb ridges, epidermal progenitors generate cylindrical, plate-, or hooklet-shaped barbule cells that form fluffy branches or pennaceous vanes, mediated by asymmetric cell junction and keratin expression. Transcriptome analyses and functional studies show anterior-posterior Wnt2b signaling within the dermal papilla controls barbule cell fates with spatiotemporal collinearity. Quantitative bio-physical analyses of feathers from birds with different flight characteristics and feathers in Burmese amber reveal how multi-dimensional functionality can be achieved and may inspire future composite material designs. VIDEO ABSTRACT.


Assuntos
Adaptação Fisiológica , Plumas/anatomia & histologia , Plumas/fisiologia , Voo Animal/fisiologia , Animais , Evolução Biológica , Aves/anatomia & histologia , Moléculas de Adesão Celular/metabolismo , Citoesqueleto/metabolismo , Derme/anatomia & histologia , Células-Tronco/citologia , Fatores de Tempo , Transcriptoma/genética , Via de Sinalização Wnt/genética
7.
Cell ; 177(2): 339-351.e13, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879786

RESUMO

Pre-mRNA splicing is executed by the spliceosome. Structural characterization of the catalytically activated complex (B∗) is pivotal for understanding the branching reaction. In this study, we assembled the B∗ complexes on two different pre-mRNAs from Saccharomyces cerevisiae and determined the cryo-EM structures of four distinct B∗ complexes at overall resolutions of 2.9-3.8 Å. The duplex between U2 small nuclear RNA (snRNA) and the branch point sequence (BPS) is discretely away from the 5'-splice site (5'SS) in the three B∗ complexes that are devoid of the step I splicing factors Yju2 and Cwc25. Recruitment of Yju2 into the active site brings the U2/BPS duplex into the vicinity of 5'SS, with the BPS nucleophile positioned 4 Å away from the catalytic metal M2. This analysis reveals the functional mechanism of Yju2 and Cwc25 in branching. These structures on different pre-mRNAs reveal substrate-specific conformations of the spliceosome in a major functional state.


Assuntos
Spliceossomos/fisiologia , Spliceossomos/ultraestrutura , Domínio Catalítico/fisiologia , Microscopia Crioeletrônica/métodos , Éxons , Íntrons , Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , Sítios de Splice de RNA/genética , Splicing de RNA/fisiologia , Fatores de Processamento de RNA/metabolismo , RNA Nuclear Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo
8.
Cell ; 171(1): 242-255.e27, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938116

RESUMO

The morphogenesis of branched organs remains a subject of abiding interest. Although much is known about the underlying signaling pathways, it remains unclear how macroscopic features of branched organs, including their size, network topology, and spatial patterning, are encoded. Here, we show that, in mouse mammary gland, kidney, and human prostate, these features can be explained quantitatively within a single unifying framework of branching and annihilating random walks. Based on quantitative analyses of large-scale organ reconstructions and proliferation kinetics measurements, we propose that morphogenesis follows from the proliferative activity of equipotent tips that stochastically branch and randomly explore their environment but compete neutrally for space, becoming proliferatively inactive when in proximity with neighboring ducts. These results show that complex branched epithelial structures develop as a self-organized process, reliant upon a strikingly simple but generic rule, without recourse to a rigid and deterministic sequence of genetically programmed events.


Assuntos
Rim/crescimento & desenvolvimento , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Modelos Biológicos , Morfogênese , Próstata/crescimento & desenvolvimento , Animais , Feminino , Humanos , Rim/embriologia , Masculino , Glândulas Mamárias Humanas/embriologia , Camundongos , Próstata/embriologia
9.
Annu Rev Cell Dev Biol ; 31: 553-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26359777

RESUMO

The respiratory endoderm develops from a small cluster of cells located on the ventral anterior foregut. This population of progenitors generates the myriad epithelial lineages required for proper lung function in adults through a complex and delicately balanced series of developmental events controlled by many critical signaling and transcription factor pathways. In the past decade, understanding of this process has grown enormously, helped in part by cell lineage fate analysis and deep sequencing of the transcriptomes of various progenitors and differentiated cell types. This review explores how these new techniques, coupled with more traditional approaches, have provided a detailed picture of development of the epithelial lineages in the lung and insight into how aberrant development can lead to lung disease.


Assuntos
Endoderma/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Pulmão/fisiologia , Morfogênese/fisiologia , Animais , Linhagem da Célula/fisiologia , Humanos , Organogênese/fisiologia
10.
EMBO J ; 43(7): 1214-1243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38388748

RESUMO

Regulation of directed axon guidance and branching during development is essential for the generation of neuronal networks. However, the molecular mechanisms that underlie interstitial (or collateral) axon branching in the mammalian brain remain unresolved. Here, we investigate interstitial axon branching in vivo using an approach for precise labeling of layer 2/3 callosal projection neurons (CPNs). This method allows for quantitative analysis of axonal morphology at high acuity and also manipulation of gene expression in well-defined temporal windows. We find that the GSK3ß serine/threonine kinase promotes interstitial axon branching in layer 2/3 CPNs by releasing MAP1B-mediated inhibition of axon branching. Further, we find that the tubulin tyrosination cycle is a key downstream component of GSK3ß/MAP1B signaling. These data suggest a cell-autonomous molecular regulation of cortical neuron axon morphology, in which GSK3ß can release a MAP1B-mediated brake on interstitial axon branching upstream of the posttranslational tubulin code.


Assuntos
Proteínas de Transporte , Tubulina (Proteína) , Animais , Tubulina (Proteína)/metabolismo , Proteínas de Transporte/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Microtúbulos/metabolismo , Axônios/metabolismo , Células Cultivadas , Mamíferos
11.
EMBO J ; 43(12): 2308-2336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760574

RESUMO

How cells coordinate morphogenetic cues and fate specification during development remains a fundamental question in organogenesis. The mammary gland arises from multipotent stem cells (MaSCs), which are progressively replaced by unipotent progenitors by birth. However, the lack of specific markers for early fate specification has prevented the delineation of the features and spatial localization of MaSC-derived lineage-committed progenitors. Here, using single-cell RNA sequencing from E13.5 to birth, we produced an atlas of matched mouse mammary epithelium and mesenchyme and reconstructed the differentiation trajectories of MaSCs toward basal and luminal fate. We show that murine MaSCs exhibit lineage commitment just prior to the first sprouting events of mammary branching morphogenesis at E15.5. We identify early molecular markers for committed and multipotent MaSCs and define their spatial distribution within the developing tissue. Furthermore, we show that the mammary embryonic mesenchyme is composed of two spatially restricted cell populations, and that dermal mesenchyme-produced FGF10 is essential for embryonic mammary branching morphogenesis. Altogether, our data elucidate the spatiotemporal signals underlying lineage specification of multipotent MaSCs, and uncover the signals from mesenchymal cells that guide mammary branching morphogenesis.


Assuntos
Linhagem da Célula , Células Epiteliais , Glândulas Mamárias Animais , Células-Tronco Mesenquimais , Animais , Camundongos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/metabolismo , Feminino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Diferenciação Celular , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 10 de Crescimento de Fibroblastos/genética , Morfogênese , Análise de Célula Única , Mesoderma/citologia , Mesoderma/metabolismo , Mesoderma/embriologia
12.
Trends Biochem Sci ; 48(9): 761-775, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482516

RESUMO

The cell orchestrates the dance of chromosome segregation with remarkable speed and fidelity. The mitotic spindle is built from scratch after interphase through microtubule (MT) nucleation, which is dependent on the γ-tubulin ring complex (γ-TuRC), the universal MT template. Although several MT nucleation pathways build the spindle framework, the question of when and how γ-TuRC is targeted to these nucleation sites in the spindle and subsequently activated remains an active area of investigation. Recent advances facilitated the discovery of new MT nucleation effectors and their mechanisms of action. In this review, we illuminate each spindle assembly pathway and subsequently consider how the pathways are merged to build a spindle.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Centro Organizador dos Microtúbulos/metabolismo
13.
EMBO J ; 42(24): e113941, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054357

RESUMO

The long noncoding RNA (lncRNA) AUXIN-REGULATED PROMOTER LOOP (APOLO) recognizes a subset of target loci across the Arabidopsis thaliana genome by forming RNA-DNA hybrids (R-loops) and modulating local three-dimensional chromatin conformation. Here, we show that APOLO regulates shade avoidance syndrome by dynamically modulating expression of key factors. In response to far-red (FR) light, expression of APOLO anti-correlates with that of its target BRANCHED1 (BRC1), a master regulator of shoot branching in Arabidopsis thaliana. APOLO deregulation results in BRC1 transcriptional repression and an increase in the number of branches. Accumulation of APOLO transcription fine-tunes the formation of a repressive chromatin loop encompassing the BRC1 promoter, which normally occurs only in leaves and in a late response to far-red light treatment in axillary buds. In addition, our data reveal that APOLO participates in leaf hyponasty, in agreement with its previously reported role in the control of auxin homeostasis through direct modulation of auxin synthesis gene YUCCA2, and auxin efflux genes PID and WAG2. We show that direct application of APOLO RNA to leaves results in a rapid increase in auxin signaling that is associated with changes in the plant response to far-red light. Collectively, our data support the view that lncRNAs coordinate shade avoidance syndrome in A. thaliana, and reveal their potential as exogenous bioactive molecules. Deploying exogenous RNAs that modulate plant-environment interactions may therefore become a new tool for sustainable agriculture.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Longo não Codificante , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Epigênese Genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Fatores de Transcrição/metabolismo
14.
Plant Cell ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630900

RESUMO

Cucumber (Cucumis sativus, Cs) tendrils are slender vegetative organs that typically require manual removal to ensure orderly growth during greenhouse cultivation. Here, we identified cucumber tendril-less (tl), a Tnt1 retrotransposon-induced insertion mutant lacking tendrils. Map-based cloning identified the mutated gene, CsaV3_3G003590, which we designated as CsTL, which is homologous to Arabidopsis thaliana LATERAL SUPPRESSOR (AtLAS). Knocking out CsTL repressed tendril formation but did not affect branch initiation, whereas overexpression of CsTL resulted in the formation of two or more tendrils in one leaf axil. Although expression of two cucumber genes regulating tendril formation, Tendril (CsTEN) and Unusual Floral Organs (CsUFO), was significantly decreased in CsTL knockout lines, these two genes were not direct downstream targets of CsTL. Instead, CsTL physically interacted with CsTEN, an interaction that further enhanced CsTEN-mediated expression of CsUFO. In Arabidopsis, the CsTL homolog AtLAS acts upstream of REVOLUTA (REV) to regulate branch initiation. Knocking out cucumber CsREV inhibited branch formation without affecting tendril initiation. Furthermore, genomic regions containing CsTL and AtLAS were not syntenic between the cucumber and Arabidopsis genomes, whereas REV orthologs were found on a shared syntenic block. Our results revealed not only that cucumber CsTL possesses a divergent function in promoting tendril formation but also that CsREV retains its conserved function in shoot branching.

15.
Mol Cell ; 73(3): 474-489.e5, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30595434

RESUMO

Local translation is rapidly regulated by extrinsic signals during neural wiring, but its control mechanisms remain elusive. Here we show that the extracellular cue Sema3A induces an initial burst in local translation that precisely controls phosphorylation of the translation initiation factor eIF2α via the unfolded protein response (UPR) kinase PERK. Strikingly, in contrast to canonical UPR signaling, Sema3A-induced eIF2α phosphorylation bypasses global translational repression and underlies an increase in local translation through differential activity of eIF2B mediated by protein phosphatase 1. Ultrasensitive proteomics analysis of axons reveals 75 proteins translationally controlled via the Sema3A-p-eIF2α pathway. These include proteostasis- and actin cytoskeleton-related proteins but not canonical stress markers. Finally, we show that PERK signaling is needed for directional axon migration and visual pathway development in vivo. Thus, our findings reveal a noncanonical eIF2 signaling pathway that controls selective changes in axon translation and is required for neural wiring.


Assuntos
Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Neurogênese , Células Ganglionares da Retina/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Axônios/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/genética , Feminino , Masculino , Neurogênese/efeitos dos fármacos , Fosforilação , Mapas de Interação de Proteínas , Proteômica/métodos , Células Ganglionares da Retina/efeitos dos fármacos , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia , Transdução de Sinais , Técnicas de Cultura de Tecidos , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(4): e2315992121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232292

RESUMO

Controllable platforms to engineer robust cytoskeletal scaffolds have the potential to create novel on-chip nanotechnologies. Inspired by axons, we combined the branching microtubule (MT) nucleation pathway with microfabrication to develop "cytoskeletal circuits." This active matter platform allows control over the adaptive self-organization of uniformly polarized MT arrays via geometric features of microstructures designed within a microfluidic confinement. We build and characterize basic elements, including turns and divisions, as well as complex regulatory elements, such as biased division and MT diodes, to construct various MT architectures on a chip. Our platform could be used in diverse applications, ranging from efficient on-chip molecular transport to mechanical nano-actuators. Further, cytoskeletal circuits can serve as a tool to study how the physical environment contributes to MT architecture in living cells.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Citoesqueleto/metabolismo , Axônios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
17.
Proc Natl Acad Sci U S A ; 121(10): e2309518121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422023

RESUMO

The silica-based cell walls of diatoms are prime examples of genetically controlled, species-specific mineral architectures. The physical principles underlying morphogenesis of their hierarchically structured silica patterns are not understood, yet such insight could indicate novel routes toward synthesizing functional inorganic materials. Recent advances in imaging nascent diatom silica allow rationalizing possible mechanisms of their pattern formation. Here, we combine theory and experiments on the model diatom Thalassiosira pseudonana to put forward a minimal model of branched rib patterns-a fundamental feature of the silica cell wall. We quantitatively recapitulate the time course of rib pattern morphogenesis by accounting for silica biochemistry with autocatalytic formation of diffusible silica precursors followed by conversion into solid silica. We propose that silica deposition releases an inhibitor that slows down up-stream precursor conversion, thereby implementing a self-replicating reaction-diffusion system different from a classical Turing mechanism. The proposed mechanism highlights the role of geometrical cues for guided self-organization, rationalizing the instructive role for the single initial pattern seed known as the primary silicification site. The mechanism of branching morphogenesis that we characterize here is possibly generic and may apply also in other biological systems.


Assuntos
Diatomáceas , Dióxido de Silício , Dióxido de Silício/química , Diatomáceas/química , Morfogênese
18.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36861436

RESUMO

Loss of FGF signaling leads to defects in salivary gland branching, but the mechanisms underlying this phenotype remain largely unknown. We disrupted expression of Fgfr1 and Fgfr2 in salivary gland epithelial cells and found that both receptors function coordinately in regulating branching. Strikingly, branching morphogenesis in double knockouts is restored by Fgfr1 and Fgfr2 (Fgfr1/2) knock-in alleles incapable of engaging canonical RTK signaling, suggesting that additional FGF-dependent mechanisms play a role in salivary gland branching. Fgfr1/2 conditional null mutants showed defective cell-cell and cell-matrix adhesion, both of which have been shown to play instructive roles in salivary gland branching. Loss of FGF signaling led to disordered cell-basement membrane interactions in vivo as well as in organ culture. This was partially restored upon introducing Fgfr1/2 wild-type or signaling alleles that are incapable of eliciting canonical intracellular signaling. Together, our results identify non-canonical FGF signaling mechanisms that regulate branching morphogenesis through cell-adhesion processes.


Assuntos
Células Epiteliais , Transdução de Sinais , Adesão Celular/genética , Células Epiteliais/metabolismo , Morfogênese/genética , Glândulas Salivares , Transdução de Sinais/genética , Fatores de Crescimento de Fibroblastos
19.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36919845

RESUMO

Diverse branching forms have evolved multiple times across the tree of life to facilitate resource acquisition and exchange with the environment. In the vascular plant group, the ancestral pattern of branching involves dichotomy of a parent shoot apex to form two new daughter apices. The molecular basis of axillary branching in Arabidopsis is well understood, but few regulators of dichotomous branching are known. Through analyses of dichotomous branching in the lycophyte, Selaginella kraussiana, we identify PIN-mediated auxin transport as an ancestral branch regulator of vascular plants. We show that short-range auxin transport out of the apices promotes dichotomy and that branch dominance is globally coordinated by long-range auxin transport. Uniquely in Selaginella, angle meristems initiate at each dichotomy, and these can develop into rhizophores or branching angle shoots. We show that long-range auxin transport and a transitory drop in PIN expression are involved in angle shoot development. We conclude that PIN-mediated auxin transport is an ancestral mechanism for vascular plant branching that was independently recruited into Selaginella angle shoot development and seed plant axillary branching during evolution.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brotos de Planta , Ácidos Indolacéticos/metabolismo , Transporte Biológico , Meristema/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Trends Immunol ; 44(7): 519-529, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277233

RESUMO

In acute immune responses to infection, memory T cells develop that can spawn recall responses. This process has not been observable directly in vivo. Here we highlight the utility of mathematical inference to derive quantitatively testable models of mammalian CD8+ T cell memory development from complex experimental data. Previous inference studies suggested that precursors of memory T cells arise early during the immune response. Recent work has both validated a crucial prediction of this T cell diversification model and refined the model. While multiple developmental routes to distinct memory subsets might exist, a branch point occurs early in proliferating T cell blasts, from which separate differentiation pathways emerge for slowly dividing precursors of re-expandable memory cells and rapidly dividing effectors.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Humanos , Animais , Diferenciação Celular , Ativação Linfocitária , Memória Imunológica , Subpopulações de Linfócitos T , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA