Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.683
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(22): 4117-4134.e28, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36306734

RESUMO

In most sensory modalities, neuronal connectivity reflects behaviorally relevant stimulus features, such as spatial location, orientation, and sound frequency. By contrast, the prevailing view in the olfactory cortex, based on the reconstruction of dozens of neurons, is that connectivity is random. Here, we used high-throughput sequencing-based neuroanatomical techniques to analyze the projections of 5,309 mouse olfactory bulb and 30,433 piriform cortex output neurons at single-cell resolution. Surprisingly, statistical analysis of this much larger dataset revealed that the olfactory cortex connectivity is spatially structured. Single olfactory bulb neurons targeting a particular location along the anterior-posterior axis of piriform cortex also project to matched, functionally distinct, extra-piriform targets. Moreover, single neurons from the targeted piriform locus also project to the same matched extra-piriform targets, forming triadic circuit motifs. Thus, as in other sensory modalities, olfactory information is routed at early stages of processing to functionally diverse targets in a coordinated manner.


Assuntos
Córtex Olfatório , Condutos Olfatórios , Camundongos , Animais , Bulbo Olfatório , Neurônios/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala
2.
Cell ; 185(24): 4621-4633.e17, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36368323

RESUMO

Methods for acquiring spatially resolved omics data from complex tissues use barcoded DNA arrays of low- to sub-micrometer features to achieve single-cell resolution. However, fabricating such arrays (randomly assembled beads, DNA nanoballs, or clusters) requires sequencing barcodes in each array, limiting cost-effectiveness and throughput. Here, we describe a vastly scalable stamping method to fabricate polony gels, arrays of ∼1-micrometer clonal DNA clusters bearing unique barcodes. By enabling repeatable enzymatic replication of barcode-patterned gels, this method, compared with the sequencing-dependent array fabrication, reduced cost by at least 35-fold and time to approximately 7 h. The gel stamping was implemented with a simple robotic arm and off-the-shelf reagents. We leveraged the resolution and RNA capture efficiency of polony gels to develop Pixel-seq, a single-cell spatial transcriptomic assay, and applied it to map the mouse parabrachial nucleus and analyze changes in neuropathic pain-regulated transcriptomes and cell-cell communication after nerve ligation.


Assuntos
Dor Crônica , Transcriptoma , Camundongos , Animais , DNA , RNA , Géis
3.
Cell ; 184(24): 5932-5949.e15, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34798069

RESUMO

Anosmia, the loss of smell, is a common and often the sole symptom of COVID-19. The onset of the sequence of pathobiological events leading to olfactory dysfunction remains obscure. Here, we have developed a postmortem bedside surgical procedure to harvest endoscopically samples of respiratory and olfactory mucosae and whole olfactory bulbs. Our cohort of 85 cases included COVID-19 patients who died a few days after infection with SARS-CoV-2, enabling us to catch the virus while it was still replicating. We found that sustentacular cells are the major target cell type in the olfactory mucosa. We failed to find evidence for infection of olfactory sensory neurons, and the parenchyma of the olfactory bulb is spared as well. Thus, SARS-CoV-2 does not appear to be a neurotropic virus. We postulate that transient insufficient support from sustentacular cells triggers transient olfactory dysfunction in COVID-19. Olfactory sensory neurons would become affected without getting infected.


Assuntos
Autopsia/métodos , COVID-19/mortalidade , COVID-19/virologia , Bulbo Olfatório/virologia , Mucosa Olfatória/virologia , Mucosa Respiratória/virologia , Idoso , Anosmia , COVID-19/fisiopatologia , Endoscopia/métodos , Feminino , Glucuronosiltransferase/biossíntese , Humanos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Transtornos do Olfato , Neurônios Receptores Olfatórios/metabolismo , Sistema Respiratório , SARS-CoV-2 , Olfato
4.
Proc Natl Acad Sci U S A ; 120(42): e2305427120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812703

RESUMO

As heatwaves become more frequent, intense, and longer-lasting due to climate change, the question of breaching thermal limits becomes pressing. A wet-bulb temperature (Tw) of 35 °C has been proposed as a theoretical upper limit on human abilities to biologically thermoregulate. But, recent-empirical-research using human subjects found a significantly lower maximum Tw at which thermoregulation is possible even with minimal metabolic activity. Projecting future exposure to this empirical critical environmental limit has not been done. Here, using this more accurate threshold and the latest coupled climate model results, we quantify exposure to dangerous, potentially lethal heat for future climates at various global warming levels. We find that humanity is more vulnerable to moist heat stress than previously proposed because of these lower thermal limits. Still, limiting warming to under 2 °C nearly eliminates exposure and risk of widespread uncompensable moist heatwaves as a sharp rise in exposure occurs at 3 °C of warming. Parts of the Middle East and the Indus River Valley experience brief exceedances with only 1.5 °C warming. More widespread, but brief, dangerous heat stress occurs in a +2 °C climate, including in eastern China and sub-Saharan Africa, while the US Midwest emerges as a moist heat stress hotspot in a +3 °C climate. In the future, moist heat extremes will lie outside the bounds of past human experience and beyond current heat mitigation strategies for billions of people. While some physiological adaptation from the thresholds described here is possible, additional behavioral, cultural, and technical adaptation will be required to maintain healthy lifestyles.


Assuntos
Aquecimento Global , Transtornos de Estresse por Calor , Humanos , Mudança Climática , Temperatura , Resposta ao Choque Térmico , Temperatura Alta
5.
Gastroenterology ; 167(1): 104-115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38286391

RESUMO

In its conventional form, celiac disease (CeD) is characterized by both positive serology and flat villi in the duodenum, and is well known by gastroenterologists and general practitioners. The aim of this review was to shed light on 2 neglected and not yet well-defined celiac phenotypes, that is, seronegative and ultrashort CeD. Seronegative CeD can be suspected in the presence of flat villi, positive HLA-DQ2 and/or HLA-DQ8, and the absence of CeD antibodies. After ruling out other seronegative enteropathies, the diagnosis can be confirmed by both clinical and histologic improvements after 1 year of a gluten-free diet. Ultrashort CeD is characterized by the finding of flat villi in the duodenal bulb in the absence of mucosal damage in the distal duodenum and with serologic positivity. Data on the prevalence, clinical manifestations, histologic lesions, genetic features, and outcome of seronegative and ultrashort CeD are inconclusive due to the few studies available and the small number of patients diagnosed. Some additional diagnostic tools have been developed recently, such as assessing intestinal transglutaminase 2 deposits, flow cytometry technique, microRNA detection, or proteomic analysis, and they seem to be useful in the identification of complex cases. Further cooperative studies are highly desirable to improve the knowledge of these 2 still-obscure variants of CeD.


Assuntos
Doença Celíaca , Dieta Livre de Glúten , Duodeno , Antígenos HLA-DQ , Doença Celíaca/diagnóstico , Doença Celíaca/imunologia , Doença Celíaca/sangue , Humanos , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/sangue , Antígenos HLA-DQ/imunologia , Duodeno/patologia , Duodeno/imunologia , Fenótipo , Transglutaminases/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/imunologia , Proteína 2 Glutamina gama-Glutamiltransferase , Biópsia , Proteínas de Ligação ao GTP/imunologia , Biomarcadores/sangue , Autoanticorpos/sangue , Testes Sorológicos , Valor Preditivo dos Testes
6.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35147186

RESUMO

The mammalian main olfactory bulb is a crucial processing centre for the sense of smell. The olfactory bulb forms early during development and is functional from birth. However, the olfactory system continues to mature and change throughout life as a target of constitutive adult neurogenesis. Our Review synthesises current knowledge of prenatal, postnatal and adult olfactory bulb development, focusing on the maturation, morphology, functions and interactions of its diverse constituent glutamatergic and GABAergic cell types. We highlight not only the great advances in the understanding of olfactory bulb development made in recent years, but also the gaps in our present knowledge that most urgently require addressing.


Assuntos
Bulbo Olfatório/crescimento & desenvolvimento , Animais , Axônios/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Neurogênese , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Transdução de Sinais , Sinapses/metabolismo
7.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132995

RESUMO

Distinct neural stem cells (NSCs) reside in different regions of the subventricular zone (SVZ) and generate multiple olfactory bulb (OB) interneuron subtypes in the adult brain. However, the molecular mechanisms underlying such NSC heterogeneity remain largely unknown. Here, we show that the basic helix-loop-helix transcription factor Olig2 defines a subset of NSCs in the early postnatal and adult SVZ. Olig2-expressing NSCs exist broadly but are most enriched in the ventral SVZ along the dorsoventral axis complementary to dorsally enriched Gsx2-expressing NSCs. Comparisons of Olig2-expressing NSCs from early embryonic to adult stages using single cell transcriptomics reveal stepwise developmental changes in their cell cycle and metabolic properties. Genetic studies further show that cross-repression contributes to the mutually exclusive expression of Olig2 and Gsx2 in NSCs/progenitors during embryogenesis, but that their expression is regulated independently from each other in adult NSCs. Finally, lineage-tracing and conditional inactivation studies demonstrate that Olig2 plays an important role in the specification of OB interneuron subtypes. Altogether, our study demonstrates that Olig2 defines a unique subset of adult NSCs enriched in the ventral aspect of the adult SVZ.


Assuntos
Interneurônios/metabolismo , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Animais , Ciclo Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Feminino , Técnicas de Inativação de Genes , Ventrículos Laterais/embriologia , Masculino , Camundongos , Camundongos Knockout , Neurogênese/genética , Bulbo Olfatório/embriologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Transdução de Sinais/genética , Transcriptoma/genética
8.
Mol Cell Neurosci ; 128: 103913, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056728

RESUMO

Fibroblast growth factors (FGFs) and bone morphogenic proteins (BMPs) play various important roles in the development of the central nervous system. However, the roles of FGF and BMP signaling in the development of the olfactory bulb (OB) are largely unknown. In this study, we first showed the expression of FGF receptors (FGFRs) and BMP receptors (BMPRs) in OB RGCs, radial glial cells (RGCs) in the developing OB, which generate the OB projection neurons, mitral and tufted cells. When the FGF signaling was inhibited by a dominant-negative form of FGFR1 (dnFGFR1), OB RGCs accelerated their state transition to mitral cell precursors without affecting their transcription cascade and fate. However, the mitral cell precursors could not radially migrate to form the mitral cell layer (MCL). In addition, FGF signaling inhibition reduced the expression of a BMP antagonist, Noggin, in the developing OB. When BMP signaling was suppressed by the ectopic expression of Noggin or a dominant-negative form of BMPR1a (dnBMPR1a) in the developing OB, the defect in MCL formation caused by the dnFGFR1 was rescued. However, the dnBMPR1a did not rescue the accelerated state transition of OB RGCs. These results demonstrate that FGF signaling is important for OB RGCs to maintain their self-renewal state and MCL formation. Moreover, the suppression of BMP signaling is required for mitral cells to form the MCL. This study sheds new light on the roles of FGFs and BMPs in OB development.


Assuntos
Proteínas Morfogenéticas Ósseas , Bulbo Olfatório , Camundongos , Animais , Bulbo Olfatório/metabolismo , Diferenciação Celular , Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais , Fatores de Crescimento de Fibroblastos
9.
Genesis ; 62(1): e23584, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38102875

RESUMO

A wide variety of CreERT2 driver lines are available for genetic manipulation of adult-born neurons in the mouse brain. These tools have been instrumental in studying fate potential, migration, circuit integration, and morphology of the stem cells supporting lifelong neurogenesis. Despite a wealth of tools, genetic manipulation of adult-born neurons for circuit and behavioral studies has been limited by poor specificity of many driver lines targeting early progenitor cells and by the inaccessibility of lines selective for later stages of neuronal maturation. We sought to address these limitations by creating a new CreERT2 driver line targeted to the endogenous mouse doublecortin locus as a marker of fate-specified neuroblasts and immature neurons. Our new model places a T2A-CreERT2 cassette immediately downstream of the Dcx coding sequence on the X chromosome, allowing expression of both Dcx and CreERT2 proteins in the endogenous spatiotemporal pattern for this gene. We demonstrate that the new mouse line drives expression of a Cre-dependent reporter throughout the brain in neonatal mice and in known neurogenic niches of adult animals. The line has been deposited with the Jackson Laboratory and should provide an accessible tool for studies targeting fate-restricted neuronal precursors.


Assuntos
Células-Tronco Neurais , Neurônios , Camundongos , Animais , Camundongos Transgênicos , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Encéfalo
10.
Genesis ; 62(2): e23595, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38553878

RESUMO

Adult neurogenesis has fascinated the field of neuroscience for decades given the prospects of harnessing mechanisms that facilitate the rewiring and/or replacement of adult brain tissue. The subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle are the two main areas in the brain that exhibit ongoing neurogenesis. Of these, adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and continued circuit integration within adult brain tissue. This review focuses on some of the recognized molecular and signaling mechanisms underlying activity-dependent adult-born neuron development. Notably, olfactory activity and behavioral states contribute to adult-born neuron plasticity through sensory and centrifugal inputs, in which calcium-dependent transcriptional programs, local translation, and neuropeptide signaling play important roles. This review also highlights areas of needed continued investigation to better understand the remarkable phenomenon of adult-born neuron integration.


Assuntos
Neurônios , Bulbo Olfatório , Camundongos , Animais , Bulbo Olfatório/fisiologia , Neurônios/fisiologia , Neurogênese/fisiologia , Encéfalo
11.
J Neurosci ; 43(7): 1178-1190, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36623874

RESUMO

The accessory olfactory system (AOS) is critical for the development and expression of social behavior. The first dedicated circuit in the AOS, the accessory olfactory bulb (AOB), exhibits cellular and network plasticity in male and female mice after social experience. In the AOB, interneurons called internal granule cells (IGCs) express the plasticity-associated immediate-early gene Arc following intermale aggression or mating. Here, we sought to better understand how Arc-expressing IGCs shape AOB information processing and social behavior in the context of territorial aggression. We used "ArcTRAP" (Arc-CreERT2) transgenic mice to selectively and permanently label Arc-expressing IGCs following male-male resident-intruder interactions. Using whole-cell patch-clamp electrophysiology, we found that Arc-expressing IGCs display increased intrinsic excitability for several days after a single resident-intruder interaction. Further, we found that Arc-expressing IGCs maintain this increased excitability across repeated resident-intruder interactions, during which resident mice increase or "ramp" their aggression. We tested the hypothesis that Arc-expressing IGCs participate in ramping aggression. Using a combination of ArcTRAP mice and chemogenetics (Cre-dependent hM4D(Gi)-mCherry AAV injections), we found that disruption of Arc-expressing IGC activity during repeated resident-intruder interactions abolishes the ramping aggression exhibited by resident male mice. This work shows that Arc-expressing AOB IGC ensembles are activated by specific chemosensory environments, and play an integral role in the establishment and expression of sex-typical social behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.SIGNIFICANCE STATEMENT The accessory olfactory system plays a vital role in rodent chemosensory social behavior. We studied experience-dependent plasticity in the accessory olfactory bulb and found that internal granule cells expressing the immediate-early gene Arc after the resident-intruder paradigm increase their excitability for several days. We investigated the roles of these Arc-expressing internal granule cells on chemosensory social behavior by chemogenetically manipulating their excitability during repeated social interactions. We found that inhibiting these cells eliminated intermale aggressive ramping behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.


Assuntos
Interneurônios , Bulbo Olfatório , Camundongos , Masculino , Feminino , Animais , Bulbo Olfatório/fisiologia , Interneurônios/fisiologia , Neurônios , Comportamento Social , Agressão , Camundongos Transgênicos , Mamíferos
12.
J Neurosci ; 43(50): 8700-8722, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37903594

RESUMO

Social communication is crucial for the survival of many species. In most vertebrates, a dedicated chemosensory system, the vomeronasal system (VNS), evolved to process ethologically relevant chemosensory cues. The first central processing stage of the VNS is the accessory olfactory bulb (AOB), which sends information to downstream brain regions via AOB mitral cells (AMCs). Recent studies provided important insights about the functional properties of AMCs, but little is known about the principles that govern their coordinated activity. Here, we recorded local field potentials (LFPs) and single-unit activity in the AOB of adult male and female mice during presentation of natural stimuli. Our recordings reveal prominent LFP theta-band oscillatory episodes with a characteristic spatial pattern across the AOB. Throughout an experiment, the AOB network shows varying degrees of similarity to this pattern, in a manner that depends on the sensory stimulus. Analysis of LFP signal polarity and single-unit activity indicates that oscillatory episodes are generated locally within the AOB, likely representing a reciprocal interaction between AMCs and granule cells. Notably, spike times of many AMCs are constrained to the negative LFP oscillation phase in a manner that can drastically affect integration by downstream processing stages. Based on these observations, we propose that LFP oscillations may gate, bind, and organize outgoing signals from individual AOB neurons to downstream processing stages. Our findings suggest that, as in other neuronal systems and brain regions, population-level oscillations play a key role in organizing and enhancing transmission of socially relevant chemosensory information.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is the first central stage of the vomeronasal system, a chemosensory system dedicated to processing cues from other organisms. Information from the AOB is conveyed to other brain regions via activity of its principal neurons, AOB mitral cells (AMCs). Here, we show that socially relevant sensory stimulation of the mouse vomeronasal system leads not only to changes in AMC activity, but also to distinct theta-band (∼5 Hz) oscillatory episodes in the local field potential. Notably AMCs favor the negative phase of these oscillatory events. Our findings suggest a novel mechanism for the temporal coordination of distributed patterns of neuronal activity, which can serve to efficiently activate downstream processing stages.


Assuntos
Neurônios , Bulbo Olfatório , Camundongos , Masculino , Feminino , Animais , Bulbo Olfatório/fisiologia , Neurônios/fisiologia , Sinais (Psicologia)
13.
Semin Cell Dev Biol ; 129: 22-30, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34462249

RESUMO

Olfactory dysfunction is often the earliest indicator of disease in a range of neurological and psychiatric disorders. One tempting working hypothesis is that pathological changes in the peripheral olfactory system where the body is exposed to many adverse environmental stressors may have a causal role for the brain alteration. Whether and how the peripheral pathology spreads to more central brain regions may be effectively studied in rodent models, and there is successful precedence in experimental models for Parkinson's disease. It is of interest to study whether a similar mechanism may underlie the pathology of psychiatric illnesses, such as schizophrenia. However, direct comparison between rodent models and humans includes challenges under light of comparative neuroanatomy and experimental methodologies used in these two distinct species. We believe that neuroimaging modality that has been the main methodology of human brain studies may be a useful viewpoint to address and fill the knowledge gap between rodents and humans in this scientific question. Accordingly, in the present review article, we focus on brain imaging studies associated with olfaction in healthy humans and patients with neurological and psychiatric disorders, and if available those in rodents. We organize this review article at three levels: 1) olfactory bulb (OB) and peripheral structures of the olfactory system, 2) primary olfactory cortical and subcortical regions, and 3) associated higher-order cortical regions. This research area is still underdeveloped, and we acknowledge that further validation with independent cohorts may be needed for many studies presented here, in particular those with human subjects. Nevertheless, whether and how peripheral olfactory disturbance impacts brain function is becoming even a hotter topic in the ongoing COVID-19 pandemic, given the risk of long-term changes of mental status associated with olfactory infection of SARS-CoV-2. Together, in this review article, we introduce this underdeveloped but important research area focusing on its implications in neurological and psychiatric disorders, with several pioneered publications.


Assuntos
COVID-19 , Transtornos do Olfato , Humanos , Neuroimagem/efeitos adversos , Transtornos do Olfato/diagnóstico por imagem , Transtornos do Olfato/etiologia , Transtornos do Olfato/patologia , Bulbo Olfatório/anatomia & histologia , Bulbo Olfatório/patologia , Pandemias , SARS-CoV-2 , Olfato
14.
J Physiol ; 602(14): 3519-3543, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837412

RESUMO

In mammals, odour information within the olfactory bulb (OB) is processed by complex neural circuits before being ultimately represented in the action potential activity of mitral/tufted cells (M/Ts). Cholecystokinin-expressing (CCK+) superficial tufted cells (sTCs) are a subset of tufted cells that potentially contribute to olfactory processing in the OB by orchestrating M/T activity. However, the exact role of CCK+ sTCs in modulating odour processing and olfactory function in vivo is largely unknown. Here, we demonstrate that manipulating CCK+ sTCs can generate perception and induce place avoidance. Optogenetic activation/inactivation of CCK+ sTCs exerted strong but differing effects on spontaneous and odour-evoked M/T firing. Furthermore, inactivation of CCK+ sTCs disrupted M/T odour encoding and impaired olfactory detection and odour discrimination. These results establish the role of CCK+ sTCs in odour representation and olfactory behaviours. KEY POINTS: Mice could perceive the activity of CCK+ sTCs and show place avoidance to CCK+ sTC inactivation. Optical activation of CCK+ sTCs increased the percentage of cells with odour response but reduced the odour-evoked response in M/Ts in awake mice. Optical inactivation of CCK+ sTCs greatly decreased spontaneous firing and odour-evoked response in M/Ts. Inactivation of CCK+ sTCs impairs the odour decoding performance of M/Ts and disrupts odour detection and discrimination behaviours in mice. These results indicate that CCK+ sTCs participate in modulating the odour representation and maintaining normal olfactory-related behaviours.


Assuntos
Colecistocinina , Bulbo Olfatório , Animais , Feminino , Masculino , Camundongos , Colecistocinina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Percepção Olfatória/fisiologia , Optogenética , Olfato/fisiologia
15.
Neurobiol Dis ; 192: 106432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331352

RESUMO

The aim of this study was to explore the role and mechanism of the olfactory bulb (OB) microglial P2X7 receptor (P2X7R) in allergic rhinitis (AR)-related depression, with the objective of identifying a potential clinical target. An AR mouse model was induced using ovalbumin (OVA), while chronic stress was employed to induce depression. The study used P2X7R-specific antagonists and OB microglia-specific P2X7R knockdown mice as crucial tools. The results showed that mice in the OVA + stress group exhibited more pronounced depressive-like phenotypes. Furthermore, there was an observed increase in microglial activation in the OB, followed by a rise in the level of inflammation. The pharmacological inhibition of P2X7R significantly mitigated the depression-like phenotype and the OB inflammatory response in OVA + stress mice. Notably, the specific knockdown of microglial P2X7R in the OB resulted in a similar effect, possibly linked to the regulation of IL-1ß via the "ATP-P2X7R-Caspase 1" axis. These findings collectively demonstrate that microglial P2X7R in the OB acts as a direct effector molecule in AR-related depression, and its inhibition may offer a novel strategy for clinical prevention and treatment.


Assuntos
Microglia , Rinite Alérgica , Animais , Camundongos , Depressão , Bulbo Olfatório , Receptores Purinérgicos P2X7/genética
16.
Neurobiol Dis ; 196: 106514, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663633

RESUMO

The olfactory bulb is involved early in the pathophysiology of Parkinson's disease (PD), which is consistent with the early onset of olfactory dysfunction. Identifying the molecular mechanisms through which PD affects the olfactory bulb could lead to a better understanding of the pathophysiology and etiology of olfactory dysfunction in PD. We specifically aimed to assess gene expression changes, affected pathways and co-expression network by whole transcriptomic profiling of the olfactory bulb in subjects with clinicopathologically defined PD. Bulk RNA sequencing was performed on frozen human olfactory bulbs of 20 PD and 20 controls without dementia or any other neurodegenerative disorder, from the Arizona Study of Aging and Neurodegenerative disorders and the Brain and Body Donation Program. Differential expression analysis (19 PD vs 19 controls) revealed 2164 significantly differentially expressed genes (1090 upregulated and 1074 downregulated) in PD. Pathways enriched in downregulated genes included oxidative phosphorylation, olfactory transduction, metabolic pathways, and neurotransmitters synapses while immune and inflammatory responses as well as cellular death related pathways were enriched within upregulated genes. An overrepresentation of microglial and astrocyte-related genes was observed amongst upregulated genes, and excitatory neuron-related genes were overrepresented amongst downregulated genes. Co-expression network analysis revealed significant modules highly correlated with PD and olfactory dysfunction that were found to be involved in the MAPK signaling pathway, cytokine-cytokine receptor interaction, cholinergic synapse, and metabolic pathways. LAIR1 (leukocyte associated immunoglobulin like receptor 1) and PPARA (peroxisome proliferator activated receptor alpha) were identified as hub genes with a high discriminative power between PD and controls reinforcing an important role of neuroinflammation in the olfactory bulb of PD subjects. Olfactory identification test score positively correlated with expression of genes coding for G-coupled protein, glutamatergic, GABAergic, and cholinergic receptor proteins and negatively correlated with genes for proteins expressed in glial olfactory ensheathing cells. In conclusion, this study reveals gene alterations associated with neuroinflammation, neurotransmitter dysfunction, and disruptions of factors involved in the initiation of olfactory transduction signaling that may be involved in PD-related olfactory dysfunction.


Assuntos
Transtornos do Olfato , Bulbo Olfatório , Doença de Parkinson , Análise de Sequência de RNA , Humanos , Bulbo Olfatório/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Masculino , Transtornos do Olfato/genética , Feminino , Idoso , Análise de Sequência de RNA/métodos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Perfilação da Expressão Gênica/métodos , Transcriptoma
17.
Evol Dev ; 26(2): e12474, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425004

RESUMO

The telencephalon of ray-finned fishes undergoes eversion, which is very different to the evagination that occurs in most other vertebrates. Ventricle morphogenesis is key to build an everted telencephalon. Thus, here we use the apical marker zona occludens 1 to understand ventricle morphology, extension of the tela choroidea and the eversion process during early telencephalon development of four teleost species: giant danio (Devario aequipinnatus), blind cavefish (Astyanax mexicanus), medaka (Oryzias latipes), and paradise fish (Macroposus opercularis). In addition, by using immunohistochemistry against tubulin and calcium-binding proteins, we analyze the general morphology of the telencephalon, showing changes in the location and extension of the olfactory bulb and other telencephalic regions from 2 to 5 days of development. We also analyze the impact of abnormal eye and telencephalon morphogenesis on eversion, showing that cyclops mutants do undergo eversion despite very dramatic abnormal eye morphology. We discuss how the formation of the telencephalic ventricle in teleost fish, with its characteristic shape, is a crucial event during eversion.


Assuntos
Peixes , Telencéfalo , Animais , Larva , Telencéfalo/anatomia & histologia , Vertebrados , Morfogênese
18.
Eur J Neurosci ; 59(7): 1480-1499, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38169095

RESUMO

Dopaminergic (DA) neurons play pivotal roles in diverse brain functions, spanning movement, reward processing and sensory perception. DA neurons are most abundant in the midbrain (Substantia Nigra pars compacta [SNC] and Ventral Tegmental Area [VTA]) and the olfactory bulb (OB) in the forebrain. Interestingly, a subtype of OB DA neurons is capable of regenerating throughout life, while a second class is exclusively born during embryonic development. Compelling evidence in SNC and VTA also indicates substantial heterogeneity in terms of morphology, connectivity and function. To further investigate this heterogeneity and directly compare form and function of midbrain and forebrain bulbar DA neurons, we performed immunohistochemistry and whole-cell patch-clamp recordings in ex vivo brain slices from juvenile DAT-tdTomato mice. After confirming the penetrance and specificity of the dopamine transporter (DAT) Cre line, we compared soma shape, passive membrane properties, voltage sags and action potential (AP) firing across midbrain and forebrain bulbar DA subtypes. We found that each DA subgroup within midbrain and OB was highly heterogeneous, and that DA neurons across the two brain areas are also substantially different. These findings complement previous work in rats as well as gene expression and in vivo datasets, further questioning the existence of a single "dopaminergic" neuronal phenotype.


Assuntos
Neurônios Dopaminérgicos , Proteína Vermelha Fluorescente , Substância Negra , Camundongos , Ratos , Animais , Neurônios Dopaminérgicos/metabolismo , Substância Negra/metabolismo , Bulbo Olfatório , Mesencéfalo/metabolismo , Área Tegmentar Ventral/metabolismo
19.
BMC Med ; 22(1): 158, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616269

RESUMO

ANKRD11 (ankyrin repeat domain 11) is a chromatin regulator and the only gene associated with KBG syndrome, a rare neurodevelopmental disorder. We have previously shown that Ankrd11 regulates murine embryonic cortical neurogenesis. Here, we show a novel olfactory bulb phenotype in a KBG syndrome mouse model and two diagnosed patients. Conditional knockout of Ankrd11 in murine embryonic neural stem cells leads to aberrant postnatal olfactory bulb development and reduced size due to reduction of the olfactory bulb granule cell layer. We further show that the rostral migratory stream has incomplete migration of neuroblasts, reduced cell proliferation as well as aberrant differentiation of neurons. This leads to reduced neuroblasts and neurons in the olfactory bulb granule cell layer. In vitro, Ankrd11-deficient neural stem cells from the postnatal subventricular zone display reduced migration, proliferation, and neurogenesis. Finally, we describe two clinically and molecularly confirmed KBG syndrome patients with anosmia and olfactory bulb and groove hypo-dysgenesis/agenesis. Our report provides evidence that Ankrd11 is a novel regulator of olfactory bulb development and neuroblast migration. Moreover, our study highlights a novel clinical sign of KBG syndrome linked to ANKRD11 perturbations in mice and humans.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Animais , Camundongos , Fácies , Bulbo Olfatório , Modelos Animais de Doenças
20.
Planta ; 260(2): 40, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954049

RESUMO

MAIN CONCLUSION: Rainwater most probably constitutes a relatively effective solvent for lichen substances in nature which have the potential to provide for human and environmental needs in the future. The aims were (i) to test the hypothesis on the potential solubility of lichen phenolic compounds using rainwater under conditions that partly reflect the natural environment and (ii) to propose new and effective methods for the water extraction of lichen substances. The results of spectrophotometric analyses of total phenolic metabolites in rainwater-based extracts from epigeic and epiphytic lichens, employing the Folin-Ciocalteu (F.-C.) method, are presented. The water solvent was tested at three pH levels: natural, 3, and 9. Extraction methods were undertaken from two perspectives: the partial imitation of natural environmental conditions and the potential use of extraction for economic purposes. From an ecological perspective, room-temperature water extraction ('cold' method) was used for 10-, 60-, and 120-min extraction periods. A variant of water extraction at analogous time intervals was an 'insolation' with a 100W light bulb to simulate the heat energy of the sun. For economic purposes, the water extraction method used the Soxhlet apparatus and its modified version, the 'tea-extraction' method ('hot' ones). The results showed that those extractions without an external heat source were almost ineffective, but insolation over 60- and 120-min periods proved to be more effective. Both tested 'hot' methods also proved to be effective, especially the 'tea-extraction' one. Generally, an increase in the concentration of phenolic compounds in water extracts resulted from an increasing solvent pH. The results show the probable involvement of lichen substances in biogeochemical processes in nature and their promising use for a variety of human necessities.


Assuntos
Líquens , Fenóis , Solubilidade , Espectrofotometria , Água , Líquens/química , Líquens/metabolismo , Fenóis/metabolismo , Fenóis/análise , Água/química , Solventes/química , Concentração de Íons de Hidrogênio , Chuva/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA