Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(20): e2111051119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35537054

RESUMO

Exocytosis and endocytosis are tightly coupled. In addition to initiating exocytosis, Ca2+ plays critical roles in exocytosis­endocytosis coupling in neurons and nonneuronal cells. Both positive and negative roles of Ca2+ in endocytosis have been reported; however, Ca2+ inhibition in endocytosis remains debatable with unknown mechanisms. Here, we show that synaptotagmin-1 (Syt1), the primary Ca2+ sensor initiating exocytosis, plays bidirectional and opposite roles in exocytosis­endocytosis coupling by promoting slow, small-sized clathrin-mediated endocytosis but inhibiting fast, large-sized bulk endocytosis. Ca2+-binding ability is required for Syt1 to regulate both types of endocytic pathways, the disruption of which leads to inefficient vesicle recycling under mild stimulation and excessive membrane retrieval following intense stimulation. Ca2+-dependent membrane tubulation may explain the opposite endocytic roles of Syt1 and provides a general membrane-remodeling working model for endocytosis determination. Thus, Syt1 is a primary bidirectional Ca2+ sensor facilitating clathrin-mediated endocytosis but clamping bulk endocytosis, probably by manipulating membrane curvature to ensure both efficient and precise coupling of endocytosis to exocytosis.


Assuntos
Endocitose , Transmissão Sináptica , Sinaptotagmina I , Cálcio/metabolismo , Endocitose/fisiologia , Exocitose/fisiologia , Neurônios/metabolismo , Sinaptotagmina I/metabolismo
2.
Muscle Nerve ; 59(5): 611-618, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30677149

RESUMO

INTRODUCTION: In motor neurons, cholera toxin B (CTB) binds to the cell-surface ganglioside GM1 and is internalized and transported via structurally unique components of plasma membranes (lipid rafts). METHODS: Lipid raft uptake by axon terminals adjoining type-identified rat diaphragm muscle fibers was investigated using CTB and confocal imaging. RESULTS: Lipid raft uptake increased significantly at higher frequency stimulation (80 Hz), compared with lower frequency (20 Hz) and unstimulated (0 Hz) conditions. The fraction of axon terminal occupied by CTB was ∼45% at 0- or 20-Hz stimulation, and increased to ∼65% at 80 Hz. Total CTB fluorescence intensity also increased (∼20%) after 80-Hz stimulation compared with 0 Hz. DISCUSSION: Evidence of increased lipid raft uptake at high stimulation frequencies supports an important role for lipid raft signaling at rat diaphragm muscle axon terminals, primarily for motor units physiologically activated at the higher frequencies. Muscle Nerve 59:611-611, 2019.


Assuntos
Toxina da Cólera/metabolismo , Diafragma/inervação , Microdomínios da Membrana/metabolismo , Junção Neuromuscular/metabolismo , Nervo Frênico/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Estimulação Elétrica , Microdomínios da Membrana/ultraestrutura , Microscopia Confocal , Neurônios Motores/metabolismo , Junção Neuromuscular/ultraestrutura , Nervo Frênico/citologia , Nervo Frênico/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Ratos
3.
Proc Natl Acad Sci U S A ; 113(22): E3150-8, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185948

RESUMO

Dynamin is a large GTPase with a crucial role in synaptic vesicle regeneration. Acute dynamin inhibition impairs neurotransmitter release, in agreement with the protein's established role in vesicle resupply. Here, using tissue-specific dynamin-1 knockout [conditional knockout (cKO)] mice at a fast central synapse that releases neurotransmitter at high rates, we report that dynamin-1 deletion unexpectedly leads to enhanced steady-state neurotransmission and consequently less synaptic depression during brief periods of high-frequency stimulation. These changes are also accompanied by increased transmission failures. Interestingly, synaptic vesicle resupply and several other synaptic properties remain intact, including basal neurotransmission, presynaptic Ca(2+) influx, initial release probability, and postsynaptic receptor saturation and desensitization. However, acute application of Latrunculin B, a reagent known to induce actin depolymerization and impair bulk and ultrafast endocytosis, has a stronger effect on steady-state depression in cKO than in control and brings the depression down to a control level. The slow phase of presynaptic capacitance decay following strong stimulation is impaired in cKO; the rapid capacitance changes immediately after strong depolarization are also different between control and cKO and sensitive to Latrunculin B. These data raise the possibility that, in addition to its established function in regenerating synaptic vesicles, the endocytosis protein dynamin-1 may have an impact on short-term synaptic depression. This role comes into play primarily during brief high-frequency stimulation.


Assuntos
Depressão/prevenção & controle , Dinamina I/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Potenciais de Ação , Animais , Endocitose/fisiologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Imunofluorescência , Masculino , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Técnicas de Patch-Clamp
4.
EMBO Rep ; 17(1): 47-63, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26589353

RESUMO

Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin-11 (Syt11), a non-Ca(2+)-binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin-mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin-coated pits and bulk endocytosis-like structures increase on the plasma membrane in Syt11-knockdown neurons. Structural-functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis.


Assuntos
Vesículas Revestidas por Clatrina/fisiologia , Clatrina/metabolismo , Endocitose , Neurônios/metabolismo , Sinaptotagminas/genética , Sinaptotagminas/metabolismo , Animais , Exocitose , Gânglios Espinais/citologia , Técnicas de Silenciamento de Genes , Neurônios/ultraestrutura , Ratos , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
5.
Mol Cell Neurosci ; 84: 112-118, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28545680

RESUMO

Bulk endocytosis allows stimulated neurons to take up a large portion of the presynaptic plasma membrane in order to regenerate synaptic vesicle pools. Actin, one of the most abundant proteins in eukaryotic cells, plays an important role in this process, but a detailed mechanistic understanding of the involvement of the cortical actin network is still lacking, in part due to the relatively small size of nerve terminals and the limitation of optical microscopy. We recently discovered that neurosecretory cells display a similar, albeit much larger, form of bulk endocytosis in response to secretagogue stimulation. This allowed us to identify a novel highly dynamic role for the acto-myosin II cortex in generating constricting rings that precede the fission of nascent bulk endosomes. In this review we focus on the mechanism underpinning this dramatic switch in the organization and function of the cortical actin network. We provide additional experimental data that suggest a role of tropomyosin Tpm3.1 and Tpm4.2 in this process, together with an emerging model of how actin controls bulk endocytosis.


Assuntos
Endocitose/fisiologia , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Tropomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Endossomos/metabolismo , Humanos , Membranas Sinápticas/metabolismo
6.
Traffic ; 14(12): 1272-89, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24025110

RESUMO

Dynamin GTPase activity increases when it oligomerizes either into helices in the presence of lipid templates or into rings in the presence of SH3 domain proteins. Dynasore is a dynamin inhibitor of moderate potency (IC50 ~ 15 µM in vitro). We show that dynasore binds stoichiometrically to detergents used for in vitro drug screening, drastically reducing its potency (IC50 = 479 µM) and research tool utility. We synthesized a focused set of dihydroxyl and trihydroxyl dynasore analogs called the Dyngo™ compounds, five of which had improved potency, reduced detergent binding and reduced cytotoxicity, conferred by changes in the position and/or number of hydroxyl substituents. The Dyngo compound 4a was the most potent compound, exhibiting a 37-fold improvement in potency over dynasore for liposome-stimulated helical dynamin activity. In contrast, while dynasore about equally inhibited dynamin assembled in its helical or ring states, 4a and 6a exhibited >36-fold reduced activity against rings, suggesting that they can discriminate between helical or ring oligomerization states. 4a and 6a inhibited dynamin-dependent endocytosis of transferrin in multiple cell types (IC50 of 5.7 and 5.8 µM, respectively), at least sixfold more potently than dynasore, but had no effect on dynamin-independent endocytosis of cholera toxin. 4a also reduced synaptic vesicle endocytosis and activity-dependent bulk endocytosis in cultured neurons and synaptosomes. Overall, 4a and 6a are improved and versatile helical dynamin and endocytosis inhibitors in terms of potency, non-specific binding and cytotoxicity. The data further suggest that the ring oligomerization state of dynamin is not required for clathrin-mediated endocytosis.


Assuntos
Dinaminas/antagonistas & inibidores , Endocitose/efeitos dos fármacos , Hidrazonas/farmacologia , Naftóis/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Toxina da Cólera/metabolismo , Relação Dose-Resposta a Droga , Descoberta de Drogas , Dinaminas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Naftóis/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Ovinos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Transferrinas/metabolismo
7.
Cell Rep ; 42(11): 113327, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37906594

RESUMO

Circuit refinement involves the formation of new presynaptic boutons as others are dismantled. Nascent presynaptic sites can incorporate material from recently eliminated synapses, but the recycling mechanisms remain elusive. In early-stage C. elegans larvae, the presynaptic boutons of GABAergic DD neurons are removed and new outputs established at alternative sites. Here, we show that developmentally regulated expression of the epithelial Na+ channel (ENaC) UNC-8 in remodeling DD neurons promotes a Ca2+ and actin-dependent mechanism, involving activity-dependent bulk endocytosis (ADBE), that recycles presynaptic material for reassembly at nascent DD synapses. ADBE normally functions in highly active neurons to accelerate local recycling of synaptic vesicles. In contrast, we find that an ADBE-like mechanism results in the distal recycling of synaptic material from old to new synapses. Thus, our findings suggest that a native mechanism (ADBE) can be repurposed to dismantle presynaptic terminals for reassembly at new, distant locations.


Assuntos
Caenorhabditis elegans , Terminações Pré-Sinápticas , Animais , Neurônios GABAérgicos/fisiologia , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo
8.
Front Cell Neurosci ; 15: 713693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759800

RESUMO

At mammalian glutamatergic synapses, most basic elements of synaptic transmission have been shown to be modulated by specific transsynaptic adhesion complexes. However, although crucial for synapse homeostasis, a physiological regulation of synaptic vesicle endocytosis by adhesion molecules has not been firmly established. The homophilic adhesion protein N-cadherin is localized at the peri-active zone, where the highly temperature-dependent endocytosis of vesicles occurs. Here, we demonstrate an important modulatory role of N-cadherin in endocytosis at near physiological temperature by synaptophysin-pHluorin imaging. Different modes of endocytosis including bulk endocytosis were dependent on N-cadherin expression and function. N-cadherin modulation might be mediated by actin filaments because actin polymerization ameliorated the knockout-induced endocytosis defect. Using super-resolution imaging, we found strong recruitment of N-cadherin to glutamatergic synapses upon massive vesicle release, which might in turn enhance vesicle endocytosis. This provides a novel, adhesion protein-mediated mechanism for efficient coupling of exo- and endocytosis.

9.
Cell Mol Gastroenterol Hepatol ; 12(1): 59-80, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33548596

RESUMO

BACKGROUND & AIMS: The molecular motor, Myosin Vb (MYO5B), is well documented for its role in trafficking cargo to the apical membrane of epithelial cells. Despite its involvement in regulating apical proteins, the role of MYO5B in cell polarity is less clear. Inactivating mutations in MYO5B result in microvillus inclusion disease (MVID), a disorder characterized by loss of key apical transporters and the presence of intracellular inclusions in enterocytes. We previously identified that inclusions in Myo5b knockout (KO) mice form from invagination of the apical brush border via apical bulk endocytosis. Herein, we sought to elucidate the role of polarity complexes and tight junction proteins during the formation of inclusions. METHODS: Intestinal tissue from neonatal control and Myo5b KO littermates was analyzed by immunofluorescence to determine the localization of polarity complexes and tight junction proteins. RESULTS: Proteins that make up the apical polarity complexes-Crumbs3 and Pars complexes-were associated with inclusions in Myo5b KO mice. In addition, tight junction proteins were observed to be concentrated over inclusions that were present at the apical membrane of Myo5b-deficient enterocytes in vivo and in vitro. Our mouse findings are complemented by immunostaining in a large animal swine model of MVID genetically engineered to express a human MVID-associated mutation that shows an accumulation of Claudin-2 over forming inclusions. The findings from our swine model of MVID suggest that a similar mechanism of tight junction accumulation occurs in patients with MVID. CONCLUSIONS: These data show that apical bulk endocytosis involves the altered localization of apical polarity proteins and tight junction proteins after loss of Myo5b.


Assuntos
Enterócitos/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Junções Íntimas/metabolismo , Animais , Endocitose , Absorção Intestinal , Camundongos , Camundongos Knockout , Miosina Tipo V/deficiência , Proteínas de Junções Íntimas/genética
10.
Neuron ; 109(19): 3119-3134.e5, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34411513

RESUMO

Transformation of flat membrane into round vesicles is generally thought to underlie endocytosis and produce speed-, amount-, and vesicle-size-specific endocytic modes. Visualizing depolarization-induced exocytic and endocytic membrane transformation in live neuroendocrine chromaffin cells, we found that flat membrane is transformed into Λ-shaped, Ω-shaped, and O-shaped vesicles via invagination, Λ-base constriction, and Ω-pore constriction, respectively. Surprisingly, endocytic vesicle formation is predominantly from not flat-membrane-to-round-vesicle transformation but calcium-triggered and dynamin-mediated closure of (1) Ω profiles formed before depolarization and (2) fusion pores (called kiss-and-run). Varying calcium influxes control the speed, number, and vesicle size of these pore closures, resulting in speed-specific slow (more than ∼6 s), fast (less than ∼6 s), or ultrafast (<0.6 s) endocytosis, amount-specific compensatory endocytosis (endocytosis = exocytosis) or overshoot endocytosis (endocytosis > exocytosis), and size-specific bulk endocytosis. These findings reveal major membrane transformation mechanisms underlying endocytosis, diverse endocytic modes, and exocytosis-endocytosis coupling, calling for correction of the half-a-century concept that the flat-to-round transformation predominantly mediates endocytosis after physiological stimulation.


Assuntos
Células Cromafins/fisiologia , Células Cromafins/ultraestrutura , Endocitose/fisiologia , Células Neuroendócrinas/fisiologia , Células Neuroendócrinas/ultraestrutura , Animais , Sinalização do Cálcio , Bovinos , Fusão Celular , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Sistemas Computacionais , Dinaminas/fisiologia , Exocitose/fisiologia , Fusão de Membrana , Cultura Primária de Células , Vesículas Sinápticas/metabolismo
11.
Curr Opin Cell Biol ; 71: 120-129, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33862329

RESUMO

Endocytosis mediates the uptake of extracellular proteins, micronutrients and transmembrane cell surface proteins. Importantly, many viruses, toxins and bacteria hijack endocytosis to infect cells. The canonical pathway is clathrin-mediated endocytosis (CME) and is active in all eukaryotic cells to support critical house-keeping functions. Unconventional mechanisms of endocytosis exit in parallel of CME, to internalize specific cargoes and support various cellular functions. These clathrin-independent endocytic (CIE) routes use three distinct mechanisms: acute signaling-induced membrane remodeling drives macropinocytosis, activity-dependent bulk endocytosis (ADBE), massive endocytosis (MEND) and EGFR non-clathrin endocytosis (EGFR-NCE). Cargo capture and local membrane deformation by cytosolic proteins is used by fast endophilin-mediated endocytosis (FEME), IL-2Rß endocytosis and ultrafast endocytosis at synapses. Finally, the formation of endocytic pits by clustering of extracellular lipids or cargoes according to the Glycolipid-Lectin (GL-Lect) hypothesis mediates the uptake of SV40 virus, Shiga and cholera toxins, and galectin-clustered receptors by the CLIC/GEEC and the endophilin-A3-mediated CIE.


Assuntos
Clatrina , Endocitose , Transporte Biológico , Clatrina/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais
12.
Elife ; 92020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33300871

RESUMO

Synaptic vesicle (SV) endocytosis is coupled to exocytosis to maintain SV pool size and thus neurotransmitter release. Intense stimulation induces activity-dependent bulk endocytosis (ADBE) to recapture large quantities of SV constituents in large endosomes from which SVs reform. How these consecutive processes are spatiotemporally coordinated remains unknown. Here, we show that Flower Ca2+ channel-dependent phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) compartmentalization governs control of these processes in Drosophila. Strong stimuli trigger PI(4,5)P2 microdomain formation at periactive zones. Upon exocytosis, Flower translocates from SVs to periactive zones, where it increases PI(4,5)P2 levels via Ca2+ influxes. Remarkably, PI(4,5)P2 directly enhances Flower channel activity, thereby establishing a positive feedback loop for PI(4,5)P2 microdomain compartmentalization. PI(4,5)P2 microdomains drive ADBE and SV reformation from bulk endosomes. PI(4,5)P2 further retrieves Flower to bulk endosomes, terminating endocytosis. We propose that the interplay between Flower and PI(4,5)P2 is the crucial spatiotemporal cue that couples exocytosis to ADBE and subsequent SV reformation.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Endocitose/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Drosophila , Retroalimentação Fisiológica/fisiologia , Junção Neuromuscular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia
13.
FEBS J ; 280(21): 5198-212, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23668323

RESUMO

Syndapin [also called PACSIN (protein kinase C and casein kinase II interacting protein)] is an Fes-CIP4 homology Bin-amphiphysin-Rvs161/167 (F-BAR) and Src-homology 3 domain-containing protein. Three genes give rise to three main isoforms in mammalian cells. They each function in different endocytic and vesicle trafficking pathways and provide critical links between the cytoskeletal network in different cellular processes, such as neuronal morphogenesis and cell migration. The membrane remodelling activity of syndapin via its F-BAR domain and its interaction partners, such as dynamin and neural Wiskott-Aldrich syndrome protein binding to its Src-homology 3 domain, are important with respect to its function. Its various partner proteins provide insights into its mechanism of action, as well as its differential roles in these cellular processes. Signalling pathways leading to the regulation of syndapin function by phosphorylation are now contributing to our understanding of the broader functions of this family of proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endocitose/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fes/metabolismo , Animais , Humanos , Domínios e Motivos de Interação entre Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA