Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 35(7): e21674, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34115899

RESUMO

Current therapeutic approaches to avoid or reverse bronchoconstriction rely primarily on ß2 adrenoceptor agonists (ß-agonists) that regulate pharmacomechanical coupling/cross bridge cycling in airway smooth muscle (ASM). Targeting actin cytoskeleton polymerization in ASM represents an alternative means to regulate ASM contraction. Herein we report the cooperative effects of targeting these distinct pathways with ß-agonists and inhibitors of the mammalian Abelson tyrosine kinase (Abl1 or c-Abl). The cooperative effect of ß-agonists (isoproterenol) and c-Abl inhibitors (GNF-5, or imatinib) on contractile agonist (methacholine, or histamine) -induced ASM contraction was assessed in cultured human ASM cells (using Fourier Transfer Traction Microscopy), in murine precision cut lung slices, and in vivo (flexiVent in mice). Regulation of intracellular signaling that regulates contraction (pMLC20, pMYPT1, pHSP20), and actin polymerization state (F:G actin ratio) were assessed in cultured primary human ASM cells. In each (cell, tissue, in vivo) model, c-Abl inhibitors and ß-agonist exhibited additive effects in either preventing or reversing ASM contraction. Treatment of contracted ASM cells with c-Abl inhibitors and ß-agonist cooperatively increased actin disassembly as evidenced by a significant reduction in the F:G actin ratio. Mechanistic studies indicated that the inhibition of pharmacomechanical coupling by ß-agonists is near optimal and is not increased by c-Abl inhibitors, and the cooperative effect on ASM relaxation resides in further relaxation of ASM tension development caused by actin cytoskeleton depolymerization, which is regulated by both ß-agonists and c-Abl inhibitors. Thus, targeting actin cytoskeleton polymerization represents an untapped therapeutic reserve for managing airway resistance.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Sinergismo Farmacológico , Contração Muscular , Relaxamento Muscular , Músculo Liso/fisiologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Traqueia/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Humanos , Mesilato de Imatinib/farmacologia , Isoproterenol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Pirimidinas/farmacologia , Transdução de Sinais , Traqueia/citologia , Traqueia/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 113(41): E6045-E6054, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671650

RESUMO

The DNA strand exchange protein RAD51 facilitates the central step in homologous recombination, a process fundamentally important for accurate repair of damaged chromosomes, restart of collapsed replication forks, and telomere maintenance. The active form of RAD51 is a nucleoprotein filament that assembles on single-stranded DNA (ssDNA) at the sites of DNA damage. The c-Abl tyrosine kinase and its oncogenic counterpart BCR-ABL fusion kinase phosphorylate human RAD51 on tyrosine residues 54 and 315. We combined biochemical reconstitutions of the DNA strand exchange reactions with total internal reflection fluorescence microscopy to determine how the two phosphorylation events affect the biochemical activities of human RAD51 and properties of the RAD51 nucleoprotein filament. By mimicking RAD51 tyrosine phosphorylation with a nonnatural amino acid, p-carboxymethyl-l-phenylalanine (pCMF), we demonstrated that Y54 phosphorylation enhances the RAD51 recombinase activity by at least two different mechanisms, modifies the RAD51 nucleoprotein filament formation, and allows RAD51 to compete efficiently with ssDNA binding protein RPA. In contrast, Y315 phosphorylation has little effect on the RAD51 activities. Based on our work and previous cellular studies, we propose a mechanism underlying RAD51 activation by c-Abl/BCR-ABL kinases.


Assuntos
Nucleoproteínas/metabolismo , Fosfotirosina/metabolismo , Rad51 Recombinase/metabolismo , Mimetismo Biológico , DNA/genética , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Recombinação Homóloga , Humanos , Hidrólise , Modelos Moleculares , Mutação , Nucleoproteínas/química , Fosforilação , Fosfotirosina/química , Fosfotirosina/genética , Conformação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas c-abl/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/genética , Proteínas Recombinantes
3.
J Cell Biochem ; 118(6): 1453-1461, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27883218

RESUMO

The pioneer transcription factor FoxA1 plays an important role in estrogen signaling by opening closed chromatin and promoting recruitment of the estrogen receptor to its target regions in DNA. In this study, we analyzed tyrosine phosphorylation of FoxA1 by the non-receptor-type tyrosine kinase c-Abl. c-Abl was shown to phosphorylate FoxA1 at multiple sites, especially in the N- and C-terminal regions. Tyr429 and Tyr464 were identified as the major phosphorylation sites in the FoxA1 C-terminal region. The phosphomimetic and nonphosphorylatable FoxA1 mutants were generated by glutamic acid and phenylalanine substitutions at these tyrosine residues, respectively. The phosphomimetic FoxA1 promoted the activation of estrogen signaling, whereas the nonphosphorylatable FoxA1 suppressed its activation. Stimulation with the epidermal growth factor, which activates c-Abl, enhanced the activation of estrogen signaling. In contrast, the c-Abl inhibitor imatinib reduced its activation. The phosphomimetic FoxA1 mutant showed a higher affinity toward histone H3 than the wild-type. These results suggest that c-Abl-mediated phosphorylation of FoxA1 promotes the activation of estrogen signaling by inducing its binding to histones. J. Cell. Biochem. 118: 1453-1461, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Estrogênios/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Tirosina/metabolismo , Células HeLa , Fator 3-alfa Nuclear de Hepatócito/genética , Histonas/metabolismo , Humanos , Mutação , Fosforilação , Proteínas Proto-Oncogênicas c-abl/genética , Transdução de Sinais
4.
Cell Biol Int ; 39(4): 446-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25561363

RESUMO

c-Abl is a non-receptor-type tyrosine kinase that regulates various cellular events, including cell proliferation, differentiation, and apoptosis, through phosphorylation of cytoplasmic and nuclear targets. Although we showed that c-Abl induces histone deacetylation, the molecular mechanisms of this phenomenon are largely unknown. Here, we analyzed the effect of c-Abl on the expression of histone deacetylase 1 (HDAC1), because c-Abl was shown to be involved in maintenance of nuclear protein levels of HDAC1. Co-transfection of HDAC1 with c-Abl increased the levels of HDAC1 protein in a kinase activity-dependent manner without affecting its mRNA levels. Treatment with the proteasome inhibitor MG132 increased protein levels of HDAC1 in cells transfected with HDAC1 but not in cells co-transfected with HDAC1 and c-Abl. Among class I HDACs, knockdown of endogenous c-Abl preferentially suppressed endogenous protein levels of HDAC1, suggesting that c-Abl stabilizes HDAC1 protein by inhibiting its proteasomal degradation. Subcellular fractionation showed that the stabilization of HDAC1 by c-Abl occurred in the nucleus. Despite the fact that HDAC1 was phosphorylated by co-expression with c-Abl, stabilization of HDAC1 by c-Abl was not affected by mutations in its sites phosphorylated by c-Abl. Co-expression with HDAC1 and nuclear-targeted c-Abl did not affect HDAC1 stabilization. Therefore, these results suggest that c-Abl induces HDAC1 stabilization possibly through phosphorylation of a cytoplasmic target that is involved in proteasomal degradation of HDAC1.


Assuntos
Histona Desacetilase 1/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Histona Desacetilase 1/genética , Humanos , Leupeptinas/farmacologia , Células MCF-7 , Microscopia de Fluorescência , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-abl/genética , RNA Mensageiro/metabolismo
5.
Exp Cell Res ; 319(20): 3251-68, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24041959

RESUMO

The non-receptor-type tyrosine kinase c-Abl is involved in actin dynamics in the cytoplasm. Having three nuclear localization signals (NLSs) and one nuclear export signal, c-Abl shuttles between the nucleus and the cytoplasm. Although monomeric actin and filamentous actin (F-actin) are present in the nucleus, little is known about the relationship between c-Abl and nuclear actin dynamics. Here, we show that nuclear-localized c-Abl induces nuclear F-actin formation. Adriamycin-induced DNA damage together with leptomycin B treatment accumulates c-Abl into the nucleus and increases the levels of nuclear F-actin. Treatment of c-Abl-knockdown cells with Adriamycin and leptomycin B barely increases the nuclear F-actin levels. Expression of nuclear-targeted c-Abl (NLS-c-Abl) increases the levels of nuclear F-actin even without Adriamycin, and the increased levels of nuclear F-actin are not inhibited by inactivation of Abl kinase activity. Intriguingly, expression of NLS-c-Abl induces the formation of long and winding bundles of F-actin within the nucleus in a c-Abl kinase activity-dependent manner. Furthermore, NLS-c-AblΔC, which lacks the actin-binding domain but has the full tyrosine kinase activity, is incapable of forming nuclear F-actin and in particular long and winding nuclear F-actin bundles. These results suggest that nuclear c-Abl plays critical roles in actin dynamics within the nucleus.


Assuntos
Actinas/biossíntese , Núcleo Celular/enzimologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Actinas/antagonistas & inibidores , Actinas/química , Animais , Sítios de Ligação , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Proteínas Proto-Oncogênicas c-abl/deficiência , Tirosina/metabolismo
6.
Cell Rep ; 43(5): 114144, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38656874

RESUMO

The molecular mechanisms underlying seizure generation remain elusive, yet they are crucial for developing effective treatments for epilepsy. The current study shows that inhibiting c-Abl tyrosine kinase prevents apoptosis, reduces dendritic spine loss, and maintains N-methyl-d-aspartate (NMDA) receptor subunit 2B (NR2B) phosphorylated in in vitro models of excitotoxicity. Pilocarpine-induced status epilepticus (SE) in mice promotes c-Abl phosphorylation, and disrupting c-Abl activity leads to fewer seizures, increases latency toward SE, and improved animal survival. Currently, clinically used c-Abl inhibitors are non-selective and have poor brain penetration. The allosteric c-Abl inhibitor, neurotinib, used here has favorable potency, selectivity, pharmacokinetics, and vastly improved brain penetration. Neurotinib-administered mice have fewer seizures and improved survival following pilocarpine-SE induction. Our findings reveal c-Abl kinase activation as a key factor in ictogenesis and highlight the impact of its inhibition in preventing the insurgence of epileptic-like seizures in rodents and humans.


Assuntos
Pilocarpina , Proteínas Proto-Oncogênicas c-abl , Convulsões , Animais , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/patologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia
7.
Front Cell Neurosci ; 13: 526, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849613

RESUMO

Spine pathology has been implicated in the early onset of Alzheimer's disease (AD), where Aß-Oligomers (AßOs) cause synaptic dysfunction and loss. Previously, we described that pharmacological inhibition of c-Abl prevents AßOs-induced synaptic alterations. Hence, this kinase seems to be a key element in AD progression. Here, we studied the role of c-Abl on dendritic spine morphological changes induced by AßOs using c-Abl null neurons (c-Abl-KO). First, we characterized the effect of c-Abl deficiency on dendritic spine density and found that its absence increases dendritic spine density. While AßOs-treatment reduces the spine number in both wild-type (WT) and c-Abl-KO neurons, AßOs-driven spine density loss was not affected by c-Abl. We then characterized AßOs-induced morphological changes in dendritic spines of c-Abl-KO neurons. AßOs induced a decrease in the number of mushroom spines in c-Abl-KO neurons while preserving the populations of immature stubby, thin, and filopodia spines. Furthermore, synaptic contacts evaluated by PSD95/Piccolo clustering and cell viability were preserved in AßOs-exposed c-Abl-KO neurons. In conclusion, our results indicate that in the presence of AßOs c-Abl participates in synaptic contact removal, increasing susceptibility to AßOs damage. Its deficiency increases the immature spine population reducing AßOs-induced synapse elimination. Therefore, c-Abl signaling could be a relevant actor in the early stages of AD.

8.
J Neuroimmune Pharmacol ; 12(4): 624-660, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28466394

RESUMO

A growing body of evidence suggests that excessive microglial activation and pesticide exposure may be linked to the etiology of PD; however, the mechanisms involved remain elusive. Emerging evidence indicates that intracellular inflammasome complex namely NLRP3 complex is involved in the recognition and execution of host inflammatory response. Thus, in the present study, we investigated the hypothesis that NLRP3 inflammasome activation is linked to rotenone (ROT)-induced microglial activation which is dependent upon a priming stimulus by a pathogen-associated molecular pattern (PAMP) or damage associated molecular pattern (DAMP), respectively. Herein using both BV2 cells and primary microglial cells, we show that LPS priming and subsequent ROT stimulation enhanced NLRP3 inflammasome activation, c-Abl and PKCδ activation, mitochondrial dysfunction, NF-κB activation, and autophagic markers, while TFEB levels were decreased dramatically. Mechanistic studies revealed c-Abl acts as a proximal signal that exacerbated the activation of the afore mentioned markers. Intriguingly, siRNA-mediated depletion or pharmacological inhibition of c-Abl via dasatinib abrogated LPS and ROT-induced microglial activation response via attenuation of NLRP3 inflammasome activation, mitochondrial oxidative stress, and ALS dysfunction. Moreover, mitoTEMPO, a mitochondrial antioxidant, attenuated NLRP3 inflammasome activation effects via blockade of c-Abl and PKCδ activation. In LPS treated mice, dasatinib attenuated NLRP3 inflammasome activation, c-Abl and PKCδ activation; and sickness behavior. Together our findings identify an exaggerated ROS/c-Abl/NLRP3 signaling axis in the heightened microglial activation response evidenced in LPS-primed ROT-stimulated microglial cells and suggest that targeting c-Abl-regulated NLRP3 inflammasome signaling offers a novel therapeutic strategy for PD treatment. Graphical Abstract ᅟ.


Assuntos
Inflamassomos/metabolismo , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Transdução de Sinais/imunologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/fisiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo
9.
J Alzheimers Dis ; 54(3): 1193-1205, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27567806

RESUMO

One of the pathological hallmarks of Alzheimer's disease (AD) is the presence of amyloid plaques, which are deposits of misfolded and aggregated amyloid-beta peptide (Aß). The role of the c-Abl tyrosine kinase in Aß-mediated neurodegeneration has been previously reported. Here, we investigated the therapeutic potential of inhibiting c-Abl using imatinib. We developed a novel method, based on a technique used to detect prions (PMCA), to measure minute amounts of misfolded-Aß in the blood of AD transgenic mice. We found that imatinib reduces Aß-oligomers in plasma, which correlates with a reduction of AD brain features such as plaques and oligomers accumulation, neuroinflammation, and cognitive deficits. Cells exposed to imatinib and c-Abl KO mice display decreased levels of ß-CTF fragments, suggesting that an altered processing of the amyloid-beta protein precursor is the most probable mechanism behind imatinib effects. Our findings support the role of c-Abl in Aß accumulation and AD, and propose AD-PMCA as a new tool to evaluate AD progression and screening for drug candidates.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/sangue , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/sangue , Doença de Alzheimer/patologia , Animais , Linhagem Celular , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos
10.
Neuropharmacology ; 93: 191-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25681617

RESUMO

Prion diseases are neurodegenerative disorders caused by the accumulation of misfolded prion proteins [scrapie form of PrP (PrP(Sc))]. PrP(Sc) accumulation in the brain causes neurotoxicity by inducing mitochondrial-apoptotic pathways. Neurodegeneration can be prevented by imatinib mesylate (Gleevec or STI571) that regulates c-Abl tyrosine kinases, which elicit protective effects in neurodegenerative disease models. However, the protective effect of STI571 against prion disease remains unknown. In the present study, the effect of STI571 on prion peptide-induced neuronal death was investigated. Results showed that STI571 rescued neurons from PrP106-126-induced neurotoxicity by preventing mitochondrial dysfunction. STI571-inhibited c-Abl tyrosine kinases prevented PrP106-126-induced reduction in mitochondrial potential, Bax translocation to the mitochondria and cytochrome c release. The protective effect of STI571 against mitochondrial dysfunction was related to the activation of BIM expression. This study is the first to demonstrate the protective effect of STI571 against prion-mediated neurotoxicity. Our results suggested that imatinib mesylate treatment may be a novel therapeutic strategy to treat prion-mediated neurotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Príons/toxicidade , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Caspases/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Marcação In Situ das Extremidades Cortadas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Neuroblastoma/patologia , Neuroblastoma/ultraestrutura , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA