Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.237
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 37: 145-171, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30526160

RESUMO

Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimeric antigen receptor (CAR) T cells were recently approved by the US Food and Drug Administration and are poised to enter the practice of medicine for leukemia and lymphoma, demonstrating that engineered immune cells can serve as a powerful new class of cancer therapeutics. The emergence of synthetic biology approaches for cellular engineering provides a broadly expanded set of tools for programming immune cells for enhanced function. Advances in T cell engineering, genetic editing, the selection of optimal lymphocytes, and cell manufacturing have the potential to broaden T cell-based therapies and foster new applications beyond oncology, in infectious diseases, organ transplantation, and autoimmunity.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoterapia Adotiva/tendências , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/fisiologia , Animais , Engenharia Genética , Humanos , Neoplasias/imunologia , Linfócitos T/transplante , Estados Unidos , United States Food and Drug Administration
2.
Cell ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39013470

RESUMO

Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.gov (NCT05859997). The infused cells persisted for over 3 months, achieving complete B cell depletion within 2 weeks of treatment. During the 6-month follow-up, we observed deep remission without cytokine release syndrome or other serious adverse events in all three patients, primarily shown by the significant improvement in the clinical response index scores for the two diseases, respectively, and supported by the observations of reversal of inflammation and fibrosis. Our results demonstrate the high safety and promising immune modulatory effect of the off-the-shelf CAR-T cells in treating severe refractory autoimmune diseases.

3.
Cell ; 186(2): 446-460.e19, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638795

RESUMO

Precise targeting of large transgenes to T cells using homology-directed repair has been transformative for adoptive cell therapies and T cell biology. Delivery of DNA templates via adeno-associated virus (AAV) has greatly improved knockin efficiencies, but the tropism of current AAV serotypes restricts their use to human T cells employed in immunodeficient mouse models. To enable targeted knockins in murine T cells, we evolved Ark313, a synthetic AAV that exhibits high transduction efficiency in murine T cells. We performed a genome-wide knockout screen and identified QA2 as an essential factor for Ark313 infection. We demonstrate that Ark313 can be used for nucleofection-free DNA delivery, CRISPR-Cas9-mediated knockouts, and targeted integration of large transgenes. Ark313 enables preclinical modeling of Trac-targeted CAR-T and transgenic TCR-T cells in immunocompetent models. Efficient gene targeting in murine T cells holds great potential for improved cell therapies and opens avenues in experimental T cell immunology.


Assuntos
Dependovirus , Engenharia Genética , Linfócitos T , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Marcação de Genes , Engenharia Genética/métodos
4.
Cell ; 185(8): 1431-1443.e16, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35427499

RESUMO

Synthetic biology has established powerful tools to precisely control cell function. Engineering these systems to meet clinical requirements has enormous medical implications. Here, we adopted a clinically driven design process to build receptors for the autonomous control of therapeutic cells. We examined the function of key domains involved in regulated intramembrane proteolysis and showed that systematic modular engineering can generate a class of receptors that we call synthetic intramembrane proteolysis receptors (SNIPRs) that have tunable sensing and transcriptional response abilities. We demonstrate the therapeutic potential of the receptor platform by engineering human primary T cells for multi-antigen recognition and production of dosed, bioactive payloads relevant to the treatment of disease. Our design framework enables the development of fully humanized and customizable transcriptional receptors for the programming of therapeutic cells suitable for clinical translation.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Receptores Artificiais , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores Artificiais/genética , Biologia Sintética , Linfócitos T
5.
Cell ; 185(10): 1745-1763.e22, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483375

RESUMO

Regulatable CAR platforms could circumvent toxicities associated with CAR-T therapy, but existing systems have shortcomings including leakiness and attenuated activity. Here, we present SNIP CARs, a protease-based platform for regulating CAR activity using an FDA-approved small molecule. Design iterations yielded CAR-T cells that manifest full functional capacity with drug and no leaky activity in the absence of drug. In numerous models, SNIP CAR-T cells were more potent than constitutive CAR-T cells and showed diminished T cell exhaustion and greater stemness. In a ROR1-based CAR lethality model, drug cessation following toxicity onset reversed toxicity, thereby credentialing the platform as a safety switch. In the same model, reduced drug dosing opened a therapeutic window that resulted in tumor eradication in the absence of toxicity. SNIP CARs enable remote tuning of CAR activity, which provides solutions to safety and efficacy barriers that are currently limiting progress in using CAR-T cells to treat solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peptídeo Hidrolases , Receptores de Antígenos de Linfócitos T , Linfócitos T/patologia
6.
Cell ; 184(19): 4981-4995.e14, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34464586

RESUMO

Poor tumor infiltration, development of exhaustion, and antigen insufficiency are common mechanisms that limit chimeric antigen receptor (CAR)-T cell efficacy. Delivery of pattern recognition receptor agonists is one strategy to improve immune function; however, targeting these agonists to immune cells is challenging, and off-target signaling in cancer cells can be detrimental. Here, we engineer CAR-T cells to deliver RN7SL1, an endogenous RNA that activates RIG-I/MDA5 signaling. RN7SL1 promotes expansion and effector-memory differentiation of CAR-T cells. Moreover, RN7SL1 is deployed in extracellular vesicles and selectively transferred to immune cells. Unlike other RNA agonists, transferred RN7SL1 restricts myeloid-derived suppressor cell (MDSC) development, decreases TGFB in myeloid cells, and fosters dendritic cell (DC) subsets with costimulatory features. Consequently, endogenous effector-memory and tumor-specific T cells also expand, allowing rejection of solid tumors with CAR antigen loss. Supported by improved endogenous immunity, CAR-T cells can now co-deploy peptide antigens with RN7SL1 to enhance efficacy, even when heterogenous CAR antigen tumors lack adequate neoantigens.


Assuntos
Fatores Imunológicos/farmacologia , RNA/farmacologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Antígenos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proteína DEAD-box 58/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Imunidade/efeitos dos fármacos , Imunocompetência , Memória Imunológica , Imunoterapia , Interferons/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Peptídeos/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Linfócitos T/efeitos dos fármacos
7.
Cell ; 180(1): 188-204.e22, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31883794

RESUMO

Glioblastomas exhibit vast inter- and intra-tumoral heterogeneity, complicating the development of effective therapeutic strategies. Current in vitro models are limited in preserving the cellular and mutational diversity of parental tumors and require a prolonged generation time. Here, we report methods for generating and biobanking patient-derived glioblastoma organoids (GBOs) that recapitulate the histological features, cellular diversity, gene expression, and mutational profiles of their corresponding parental tumors. GBOs can be generated quickly with high reliability and exhibit rapid, aggressive infiltration when transplanted into adult rodent brains. We further demonstrate the utility of GBOs to test personalized therapies by correlating GBO mutational profiles with responses to specific drugs and by modeling chimeric antigen receptor T cell immunotherapy. Our studies show that GBOs maintain many key features of glioblastomas and can be rapidly deployed to investigate patient-specific treatment strategies. Additionally, our live biobank establishes a rich resource for basic and translational glioblastoma research.


Assuntos
Técnicas de Cultura de Células/métodos , Glioblastoma/metabolismo , Organoides/crescimento & desenvolvimento , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Bancos de Espécimes Biológicos , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Organoides/metabolismo , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
Cell ; 182(4): 855-871.e23, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32730808

RESUMO

A T cell receptor (TCR) mediates antigen-induced signaling through its associated CD3ε, δ, γ, and ζ, but the contributions of different CD3 chains remain elusive. Using quantitative mass spectrometry, we simultaneously quantitated the phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) of all CD3 chains upon TCR stimulation. A subpopulation of CD3ε ITAMs was mono-phosphorylated, owing to Lck kinase selectivity, and specifically recruited the inhibitory Csk kinase to attenuate TCR signaling, suggesting that TCR is a self-restrained signaling machinery containing both activating and inhibitory motifs. Moreover, we found that incorporation of the CD3ε cytoplasmic domain into a second-generation chimeric antigen receptor (CAR) improved antitumor activity of CAR-T cells. Mechanistically, the Csk-recruiting ITAM of CD3ε reduced CAR-T cytokine production whereas the basic residue rich sequence (BRS) of CD3ε promoted CAR-T persistence via p85 recruitment. Collectively, CD3ε is a built-in multifunctional signal tuner, and increasing CD3 diversity represents a strategy to design next-generation CAR.


Assuntos
Complexo CD3/metabolismo , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Animais , Complexo CD3/química , Proteína Tirosina Quinase CSK/metabolismo , Linhagem Celular , Citocinas/metabolismo , Humanos , Ativação Linfocitária/efeitos dos fármacos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/terapia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Sobrevida , Vanadatos/farmacologia
9.
Cell ; 179(4): 880-894.e10, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31668804

RESUMO

Current approaches to reducing the latent HIV reservoir entail first reactivating virus-containing cells to become visible to the immune system. A critical second step is killing these cells to reduce reservoir size. Endogenous cytotoxic T-lymphocytes (CTLs) may not be adequate because of cellular exhaustion and the evolution of CTL-resistant viruses. We have designed a universal CAR-T cell platform based on CTLs engineered to bind a variety of broadly neutralizing anti-HIV antibodies. We show that this platform, convertibleCAR-T cells, effectively kills HIV-infected, but not uninfected, CD4 T cells from blood, tonsil, or spleen and only when armed with anti-HIV antibodies. convertibleCAR-T cells also kill within 48 h more than half of the inducible reservoir found in blood of HIV-infected individuals on antiretroviral therapy. The modularity of convertibleCAR-T cell system, which allows multiplexing with several anti-HIV antibodies yielding greater breadth and control, makes it a promising tool for attacking the latent HIV reservoir.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Infecções por HIV/terapia , Imunoterapia Adotiva , Replicação Viral/genética , Animais , Anticorpos Anti-Idiotípicos/imunologia , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Camundongos , Tonsila Palatina/imunologia , Tonsila Palatina/metabolismo , Cultura Primária de Células , Baço/imunologia , Baço/metabolismo , Linfócitos T Citotóxicos/imunologia , Latência Viral/imunologia , Replicação Viral/imunologia
10.
Immunity ; 57(2): 287-302.e12, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38354704

RESUMO

The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.


Assuntos
Antígenos CD28 , Redes Reguladoras de Genes , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Antígenos CD28/metabolismo , Transdução de Sinais , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ligante CD27/genética , Ligante CD27/metabolismo , Linfócitos T CD8-Positivos
11.
Immunity ; 53(2): 456-470.e6, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32758419

RESUMO

Clinical evidence suggests that poor persistence of chimeric antigen receptor-T cells (CAR-T) in patients limits therapeutic efficacy. Here, we designed a CAR with recyclable capability to promote in vivo persistence and to sustain antitumor activity. We showed that the engagement of tumor antigens induced rapid ubiquitination of CARs, causing CAR downmodulation followed by lysosomal degradation. Blocking CAR ubiquitination by mutating all lysines in the CAR cytoplasmic domain (CARKR) markedly repressed CAR downmodulation by inhibiting lysosomal degradation while enhancing recycling of internalized CARs back to the cell surface. Upon encountering tumor antigens, CARKR-T cells ameliorated the loss of surface CARs, which promoted their long-term killing capacity. Moreover, CARKR-T cells containing 4-1BB signaling domains displayed elevated endosomal 4-1BB signaling that enhanced oxidative phosphorylation and promoted memory T cell differentiation, leading to superior persistence in vivo. Collectively, our study provides a straightforward strategy to optimize CAR-T antitumor efficacy by redirecting CAR trafficking.


Assuntos
Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Humanos , Memória Imunológica/imunologia , Imunoterapia Adotiva , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mitocôndrias/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T/citologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Cell ; 81(22): 4747-4756.e7, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34648747

RESUMO

The CRISPR-Cas12a system shows unique features compared with widely used Cas9, making it an attractive and potentially more precise alternative. However, the adoption of this system has been hindered by its relatively low editing efficiency. Guided by physical chemical principles, we covalently conjugated 5' terminal modified CRISPR RNA (crRNA) to a site-specifically modified Cas12a through biorthogonal chemical reaction. The genome editing efficiency of the resulting conjugated Cas12a complex (cCas12a) was substantially higher than that of the wild-type complex. We also demonstrated that cCas12a could be used for precise gene knockin and multiplex gene editing in a chimeric antigen receptor T cell preparation with efficiency much higher than that of the wild-type system. Overall, our findings indicate that covalently linking Cas nuclease and crRNA is an effective approach to improve the Cas12a-based genome editing system and could potentially provide an insight into engineering other Cas family members with low efficiency as well.


Assuntos
Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Endodesoxirribonucleases/genética , Edição de Genes , Receptores de Antígenos Quiméricos/metabolismo , Acidaminococcus , Animais , DNA/química , DNA/metabolismo , Endonucleases/metabolismo , Escherichia coli/metabolismo , Técnicas de Introdução de Genes , Técnicas Genéticas , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Células K562 , Camundongos , Mutagênese , RNA/metabolismo , Espectrometria de Massas em Tandem
13.
Trends Immunol ; 45(5): 329-337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600001

RESUMO

Neurodegenerative disorders present major challenges to global health, exacerbated by an aging population and the absence of therapies. Despite diverse pathological manifestations, they share a common hallmark, loosely termed 'neuroinflammation'. The prevailing dogma is that the immune system is an active contributor to neurodegeneration; however, recent evidence challenges this. By analogy with road construction, which causes temporary closures and disruptions, the immune system's actions in the central nervous system (CNS) might initially appear destructive, and might even cause harm, while aiming to combat neurodegeneration. We propose that the application of cellular immunotherapies to coordinate the immune response towards remodeling might pave the way for new modes of tackling the roadblocks of neurodegenerative diseases.


Assuntos
Imunoterapia , Doenças Neurodegenerativas , Animais , Humanos , Sistema Nervoso Central/imunologia , Imunoterapia/métodos , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/imunologia
14.
Immunity ; 49(5): 829-841.e6, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30389415

RESUMO

Initial molecular details of cellular activation following αßT cell antigen receptor (TCR) ligation by peptide-major histocompatibility complexes (pMHC) remain unexplored. We determined the nuclear magnetic resonance (NMR) structure of the TCRα subunit transmembrane (TM) domain revealing a bipartite helix whose segmentation fosters dynamic movement. Positively charged TM residues Arg251 and Lys256 project from opposite faces of the helix, with Lys256 controlling immersion depth. Their modification caused stepwise reduction in TCR associations with CD3ζζ homodimers and CD3εγ plus CD3εδ heterodimers, respectively, leading to an activated transcriptome. Optical tweezers revealed that Arg251 and Lys256 mutations altered αßTCR-pMHC bond lifetimes, while mutations within interacting TCRα connecting peptide and CD3δ CxxC motif juxtamembrane elements selectively attenuated signal transduction. Our findings suggest that mechanical forces applied during pMHC ligation initiate T cell activation via a dissociative mechanism, shifting disposition of those basic sidechains to rearrange TCR complex membrane topology and weaken TCRαß and CD3 associations.


Assuntos
Complexo CD3/metabolismo , Membrana Celular/metabolismo , Domínios Proteicos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Sequência de Aminoácidos , Biomarcadores , Complexo CD3/química , Sequência Conservada , Perfilação da Expressão Gênica , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Transdução de Sinais , Transcriptoma
15.
Immunol Rev ; 320(1): 138-146, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37366589

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising approach for cancer treatment. CAR is a synthetic immune receptor that recognizes tumor antigen and activates T cells through multiple signaling pathways. However, the current CAR design is not as robust as T cell receptor (TCR), a natural antigen receptor with high sensitivity and efficiency. TCR signaling relies on specific molecular interactions, and thus electrostatic force, the major force of molecular interactions, play critical roles. Understanding how electrostatic charge regulates TCR/CAR signaling events will facilitate the development of next-generation T cell therapies. This review summarizes recent findings on the roles of electrostatic interactions in both natural and synthetic immune receptor signaling, specifically that in CAR clustering and effector molecule recruitments, and highlights potential strategies for engineering CAR-T cell therapy by leveraging charge-based interactions.


Assuntos
Neoplasias , Humanos , Eletricidade Estática , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Imunoterapia Adotiva
16.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38546326

RESUMO

Chimeric antigen receptor T-cell (CAR-T) immunotherapy, a novel approach for treating blood cancer, is associated with the production of cytokine release syndrome (CRS), which poses significant safety concerns for patients. Currently, there is limited knowledge regarding CRS-related cytokines and the intricate relationship between cytokines and cells. Therefore, it is imperative to explore a reliable and efficient computational method to identify cytokines associated with CRS. In this study, we propose Meta-DHGNN, a directed and heterogeneous graph neural network analysis method based on meta-learning. The proposed method integrates both directed and heterogeneous algorithms, while the meta-learning module effectively addresses the issue of limited data availability. This approach enables comprehensive analysis of the cytokine network and accurate prediction of CRS-related cytokines. Firstly, to tackle the challenge posed by small datasets, a pre-training phase is conducted using the meta-learning module. Consequently, the directed algorithm constructs an adjacency matrix that accurately captures potential relationships in a more realistic manner. Ultimately, the heterogeneous algorithm employs meta-photographs and multi-head attention mechanisms to enhance the realism and accuracy of predicting cytokine information associated with positive labels. Our experimental verification on the dataset demonstrates that Meta-DHGNN achieves favorable outcomes. Furthermore, based on the predicted results, we have explored the multifaceted formation mechanism of CRS in CAR-T therapy from various perspectives and identified several cytokines, such as IFNG (IFN-γ), IFNA1, IFNB1, IFNA13, IFNA2, IFNAR1, IFNAR2, IFNGR1 and IFNGR2 that have been relatively overlooked in previous studies but potentially play pivotal roles. The significance of Meta-DHGNN lies in its ability to analyze directed and heterogeneous networks in biology effectively while also facilitating CRS risk prediction in CAR-T therapy.


Assuntos
Citocinas , Receptores de Antígenos Quiméricos , Humanos , Síndrome da Liberação de Citocina , Receptores de Antígenos Quiméricos/genética , Aprendizagem , Redes Neurais de Computação , Interferon-alfa
17.
Proc Natl Acad Sci U S A ; 120(1): e2213222120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577059

RESUMO

Adoptive T cell transfer (ACT) therapies suffer from a number of limitations (e.g., poor control of solid tumors), and while combining ACT with cytokine therapy can enhance effectiveness, this also results in significant side effects. Here, we describe a nanotechnology approach to improve the efficacy of ACT therapies by metabolically labeling T cells with unnatural sugar nanoparticles, allowing direct conjugation of antitumor cytokines onto the T cell surface during the manufacturing process. This allows local, concentrated activity of otherwise toxic cytokines. This approach increases T cell infiltration into solid tumors, activates the host immune system toward a Type 1 response, encourages antigen spreading, and improves control of aggressive solid tumors and achieves complete blood cancer regression with otherwise noncurative doses of CAR-T cells. Overall, this method provides an effective and easily integrated approach to the current ACT manufacturing process to increase efficacy in various settings.


Assuntos
Citocinas , Neoplasias , Humanos , Citocinas/metabolismo , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T , Linfócitos T , Neoplasias/patologia , Terapia Baseada em Transplante de Células e Tecidos
18.
Cancer Metastasis Rev ; 43(3): 1075-1093, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38592427

RESUMO

The current CAR-T cell therapy products have been hampered in their druggability due to the personalized preparation required, unclear pharmacokinetic characteristics, and unpredictable adverse reactions. Enabling standardized manufacturing and having clear efficacy and pharmacokinetic characteristics are prerequisites for ensuring the effective practicality of CAR-T cell therapy drugs. This review provides a broad overview of the different approaches for controlling behaviors of CAR-T cells in vivo. The utilization of genetically modified vectors enables in vivo production of CAR-T cells, thereby abbreviating or skipping the lengthy in vitro expansion process. By equipping CAR-T cells with intricately designed control elements, using molecule switches or small-molecule inhibitors, the control of CAR-T cell activity can be achieved. Moreover, the on-off control of CAR-T cell activity would yield potential gains in phenotypic remodeling. These methods provide beneficial references for the future development of safe, controllable, convenient, and suitable for standardized production of CAR-T cell therapy products.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Animais , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Linfócitos T/imunologia
19.
Int Immunol ; 36(2): 65-73, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38189591

RESUMO

In currently ongoing adoptive T-cell therapies, T cells collected from patients are given back to them after ex vivo activation and expansion. In some cases, T cells are transduced with chimeric antigen receptor (CAR) or T-cell receptor (TCR) genes during the ex vivo culture period in order to endow T cells with the desired antigen specificity. Although such strategies are effective in some types of cancer, there remain issues to be solved: (i) the limited number of cells, (ii) it is time-consuming, (iii) it is costly, and (iv) the quality can be unstable. Points (ii) and (iv) can be solved by preparing allogeneic T cells and cryopreserving them in advance and methods are being developed using healthy donor-derived T cells or pluripotent stem cells as materials. Whereas it is difficult to solve (i) and (iii) in the former case, all the issues can be cleared in the latter case. However, in either case, a new problem arises: rejection by the patient's immune system. Deletion of human leukocyte antigen (HLA) avoids rejection by recipient T cells, but causes rejection by NK cells, which can recognize loss of HLA class I. Various countermeasures have been developed, but no definitive solution is yet available. Therefore, further research and development are necessary.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Humanos , Imunoterapia Adotiva/métodos , Linfócitos T , Células Matadoras Naturais , Receptores de Antígenos de Linfócitos T
20.
Int Immunol ; 36(7): 353-364, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38517027

RESUMO

The efficient generation of chimeric antigen receptor (CAR) T cells is highly influenced by the quality of apheresed T cells. Healthy donor-derived T cells usually proliferate better than patients-derived T cells and are precious resources to generate off-the-shelf CAR-T cells. However, relatively little is known about the determinants that affect the efficient generation of CAR-T cells from healthy donor-derived peripheral blood mononuclear cells (PBMCs) compared with those from the patients' own PBMCs. We here examined the efficiency of CAR-T cell generation from multiple healthy donor samples and analyzed its association with the phenotypic features of the starting peripheral blood T cells. We found that CD62L expression levels within CD8+ T cells were significantly correlated with CAR-T cell expansion. Moreover, high CD62L expression within naïve T cells was associated with the efficient expansion of T cells with a stem cell-like memory phenotype, an indicator of high-quality infusion products. Intriguingly, genetic disruption of CD62L significantly impaired CAR-T cell proliferation and cytokine production upon antigen stimulation. Conversely, ectopic expression of a shedding-resistant CD62L mutant augmented CAR-T cell effector functions compared to unmodified CAR-T cells, resulting in improved antitumor activity in vivo. Collectively, we identified the surface expression of CD62L as a concise indicator of potent T-cell proliferation. CD62L expression is also associated with the functional properties of CAR-T cells. These findings are potentially applicable to selecting optimal donors to massively generate CAR-T cell products.


Assuntos
Imunoterapia Adotiva , Selectina L , Receptores de Antígenos Quiméricos , Selectina L/metabolismo , Selectina L/imunologia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Animais , Camundongos , Imunoterapia Adotiva/métodos , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA