RESUMO
SARS-CoV-2 is a zoonotic betacoronavirus that was first reported at the dawn of 2019 in Wuhan, China and has since spread globally, causing an ongoing pandemic. Anthroponotic transmission was reported early, with confirmed infections reported in 26 species to date, including dogs and cats. However, there is a paucity of reports on the transmission of SARS-CoV-2 to companion animals, and thus, we aimed to estimate the seroprevalence of SARS-CoV-2 in dogs and cats in Sarawak, Malaysia. From August 2022 to 2023, we screened plasma samples of 172 companion animals in Sarawak, Malaysia, using a species-independent surrogate virus neutralization test. Our findings revealed the presence of neutralizing antibodies of SARS-CoV-2 in 24.5% (27/110) of dogs and 24.2% (15/62) of cats. To the best of our knowledge, this is the first report of the seroprevalence of SARS-CoV-2 in companion animals in Malaysia. Our findings emphasize the need for pet owners to distance themselves from their pets when unwell, and a strategy must be in place to monitor SARS-CoV-2 in companion animals to assess the potential impact of the virus on companion animals.
Assuntos
COVID-19 , Doenças do Gato , Doenças do Cão , Animais , Gatos , Cães , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/veterinária , Animais de Estimação , Malásia/epidemiologia , Doenças do Gato/epidemiologia , Estudos Soroepidemiológicos , Doenças do Cão/epidemiologiaRESUMO
The functional evolution of proteins advances through gene duplication followed by functional drift, whereas molecular evolution occurs through random mutational events. Over time, protein active-site structures or functional epitopes remain highly conserved, which enables relationships to be inferred between distant orthologs or paralogs. In this study, we present the first functional clustering and evolutionary analysis of the RCSB Protein Data Bank (RCSB PDB) based on similarities between active-site structures. All of the ligand-bound proteins within the RCSB PDB were scored using our Comparison of Protein Active-site Structures (CPASS) software and database (http://cpass.unl.edu/). Principal component analysis was then used to identify 4431 representative structures to construct a phylogenetic tree based on the CPASS comparative scores (http://itol.embl.de/shared/jcatazaro). The resulting phylogenetic tree identified a sequential, step-wise evolution of protein active-sites and provides novel insights into the emergence of protein function or changes in substrate specificity based on subtle changes in geometry and amino acid composition.
Assuntos
Proteínas/química , Aminoácidos/química , Biologia Computacional , Bases de Dados de Proteínas , Proteínas/fisiologia , SoftwareRESUMO
Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active-site structural similarities has not yet been undertaken. Pyridoxal-5'-phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the comparison of protein active site structures (CPASS) software and database, we show that the active site structures of PLP-dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three-dimensional-fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS.
Assuntos
Coenzimas/metabolismo , Modelos Moleculares , Fosfato de Piridoxal/metabolismo , Transaminases/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Coenzimas/química , Bases de Dados de Proteínas , Evolução Molecular , Humanos , Ligantes , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Fosfato de Piridoxal/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Software , Especificidade por Substrato , Transaminases/classificação , Transaminases/genética , Transaminases/metabolismoRESUMO
High-throughput serological tests that can detect neutralizing antibodies against SARS-CoV-2 are desirable for serosurveillance and vaccine efficacy evaluation. Although the conventional neutralization test (cVNT) remains the gold standard to confirm the presence of neutralizing antibodies in sera, the test is too labour-intensive for massive screening programs and less reproducible as live virus and cell culture is involved. Here, we performed an independent evaluation of a commercially available surrogate virus neutralization test (sVNT, GenScript cPass™) that can be done without biosafety level 3 containment in less than 2 h. When using the cVNT and a Luminex multiplex immunoassay (MIA) as reference, the sVNT obtained a sensitivity of 94 % (CI 90-96 %) on a panel of 317 immune sera that were obtained from hospitalized and mild COVID-19 cases from Belgium and a sensitivity of 88 % (CI 81-93 %) on a panel of 184 healthcare workers from the Democratic Republic of Congo. We also found strong antibody titer correlations (rs>0.8) among the different techniques used. In conclusion, our evaluation suggests that the sVNT could be a powerful tool to monitor/detect neutralising antibodies in cohort and population studies. The technique could be especially useful for vaccine evaluation studies in sub-Saharan Africa where the basic infrastructure to perform cVNTs is lacking.