Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.094
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 51(3): 443-450.e4, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31422870

RESUMO

The presence of gallstones (cholelithiasis) is a highly prevalent and severe disease and one of the leading causes of hospital admissions worldwide. Due to its substantial health impact, we investigated the biological mechanisms that lead to the formation and growth of gallstones. We show that gallstone assembly essentially requires neutrophil extracellular traps (NETs). We found consistent evidence for the presence of NETs in human and murine gallstones and describe an immune-mediated process requiring activation of the innate immune system for the formation and growth of gallstones. Targeting NET formation via inhibition of peptidyl arginine deiminase type 4 or abrogation of reactive oxygen species (ROS) production, as well as damping of neutrophils by metoprolol, effectively inhibit gallstone formation in vivo. Our results show that after the physicochemical process of crystal formation, NETs foster their assembly into larger aggregates and finally gallstones. These insights provide a feasible therapeutic concept to prevent cholelithiasis in patients at risk.


Assuntos
Armadilhas Extracelulares/imunologia , Cálculos Biliares/imunologia , Neutrófilos/imunologia , Animais , Feminino , Humanos , Imunidade Inata/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/imunologia
2.
Proc Natl Acad Sci U S A ; 120(15): e2213987120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011196

RESUMO

The dinosaur-bird transition involved several anatomical, biomechanical, and physiological modifications of the theropod bauplan. Non-avian maniraptoran theropods, such as Troodon, are key to better understand changes in thermophysiology and reproduction occurring during this transition. Here, we applied dual clumped isotope (Δ47 and Δ48) thermometry, a technique that resolves mineralization temperature and other nonthermal information recorded in carbonates, to eggshells from Troodon, modern reptiles, and modern birds. Troodon eggshells show variable temperatures, namely 42 and 29 ± 2 °C, supporting the hypothesis of an endothermic thermophysiology with a heterothermic strategy for this extinct taxon. Dual clumped isotope data also reveal physiological differences in the reproductive systems between Troodon, reptiles, and birds. Troodon and modern reptiles mineralize their eggshells indistinguishable from dual clumped isotope equilibrium, while birds precipitate eggshells characterized by a positive disequilibrium offset in Δ48. Analyses of inorganic calcites suggest that the observed disequilibrium pattern in birds is linked to an amorphous calcium carbonate (ACC) precursor, a carbonate phase known to accelerate eggshell formation in birds. Lack of disequilibrium patterns in reptile and Troodon eggshells implies these vertebrates had not acquired the fast, ACC-based eggshell calcification process characteristic of birds. Observation that Troodon retained a slow reptile-like calcification suggests that it possessed two functional ovaries and was limited in the number of eggs it could produce; thus its large clutches would have been laid by several females. Dual clumped isotope analysis of eggshells of extinct vertebrates sheds light on physiological information otherwise inaccessible in the fossil record.


Assuntos
Casca de Ovo , Répteis , Animais , Feminino , Carbonato de Cálcio , Isótopos
3.
Proc Natl Acad Sci U S A ; 119(45): e2212616119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322756

RESUMO

Some mollusc shells are formed from an amorphous calcium carbonate (ACC) compound, which further transforms into a crystalline material. The transformation mechanism is not fully understood but is however crucial to develop bioinspired synthetic biomineralization strategies or accurate marine biomineral proxies for geoscience. The difficulty arises from the simultaneous presence of crystalline and amorphous compounds in the shell, which complicates the selective experimental characterization of the amorphous fraction. Here, we use nanobeam X-ray total scattering together with an approach to separate crystalline and amorphous scattering contributions to obtain the spatially resolved atomic pair distribution function (PDF). We resolve three distinct amorphous calcium carbonate compounds, present in the shell of Pinctada margaritifera and attributed to: interprismatic periostracum, young mineralizing units, and mature mineralizing units. From this, we extract accurate bond parameters by reverse Monte Carlo (RMC) modeling of the PDF. This shows that the three amorphous compounds differ mostly in their Ca-O nearest-neighbor atom pair distance. Further characterization with conventional spectroscopic techniques unveils the presence of Mg in the shell and shows Mg-calcite in the final, crystallized shell. In line with recent literature, we propose that the amorphous-to-crystal transition is mediated by the presence of Mg. The transition occurs through the decomposition of the initial Mg-rich precursor into a second Mg-poor ACC compound before forming a crystal.


Assuntos
Pinctada , Animais , Carbonato de Cálcio/química , Moluscos , Raios X
4.
Mol Pharm ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017595

RESUMO

Micro- and nanoparticles delivery systems have been widely studied as vaccine adjuvants to enhance immunogenicity and sustain long-term immune responses. Polygonatum sibiricum polysaccharide (PSP) has been widely studied as an immunoregulator in improving immune responses. In this study, we synthesized and characterized cationic modified calcium carbonate (CaCO3) microparticles loaded with PSP (PEI-PSP-CaCO3, CTAB-PSP-CaCO3), studied the immune responses elicited by PEI-PSP-CaCO3 and CTAB-PSP-CaCO3 carrying ovalbumin (OVA). Our results demonstrated that PEI-PSP-CaCO3 significantly enhanced the secretion of IgG and cytokines (IL-4, IL-6, IFN-γ, and TNF-α) in vaccinated mice. Additionally, PEI-PSP-CaCO3 induced the activation of dendritic cells (DCs), T cells, and germinal center (GC) B cells in draining lymph nodes (dLNs). It also enhanced lymphocyte proliferation, increased the ratio of CD4+/CD8+ T cells, and elevated the frequency of CD3+ CD69+ T cells in spleen lymphocytes. Therefore, PEI-PSP-CaCO3 microparticles induced a stronger cellular and humoral immune response and could be potentially useful as a vaccine delivery and adjuvant system.

5.
Environ Sci Technol ; 58(2): 1199-1210, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38173390

RESUMO

The hydration of CO2 suffers from kinetic inefficiencies that make its natural trapping impractically sluggish. However, CO2-fixing carbonic anhydrases (CAs) remarkably accelerate its equilibration by 6 orders of magnitude and are, therefore, "ideal" catalysts. Notably, CA has been detected in ureolytic bacteria, suggesting its potential involvement in microbially induced carbonate precipitation (MICP), yet the dynamics of the urease (Ur) and CA genes remain poorly understood. Here, through the use of the ureolytic bacteriumSporosarcina pasteurii, we investigate the differing role of Ur and CA in ureolysis, CO2 hydration, and CaCO3 precipitation with increasing CO2(g) concentrations. We show that Ur gene up-regulation coincides with an increase in [HCO3-] following the hydration of CO2 to HCO3- by CA. Hence, CA physiologically promotes buffering, which enhances solubility trapping and affects the phase of the CaCO3 mineral formed. Understanding the role of CO2 hydration on the performance of ureolysis and CaCO3 precipitation provides essential new insights, required for the development of next-generation biocatalyzed CO2 trapping technologies.


Assuntos
Dióxido de Carbono , Anidrases Carbônicas , Carbonato de Cálcio , Urease , Anidrases Carbônicas/genética , Ureia , Precipitação Química
6.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38111211

RESUMO

AIM: This study aimed to understand the morphological effects of (in)organic additives on microbially induced calcium carbonate precipitation (MICP). METHODS AND RESULTS: MICP was monitored in real time in the presence of (in)organic additives: bovine serum albumin (BSA), biofilm surface layer protein A (BslA), magnesium chloride (MgCl2), and poly-l-lysine. This monitoring was carried out using confocal microscopy to observe the formation of CaCO3 from the point of nucleation, in comparison to conditions without additives. Complementary methodologies, namely scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction, were employed to assess the visual morphology, elemental composition, and crystalline structures of CaCO3, respectively, following the crystals' formation. The results demonstrated that in the presence of additives, more CaCO3 crystals were produced at 100 min compared to the reaction without additives. The inclusion of BslA resulted in larger crystals than reactions containing other additives, including MgCl2. BSA induced a significant number of crystals from the early stages of the reaction (20 min) but did not have a substantial impact on crystal size compared to conditions without additives. All additives led to a higher content of calcite compared to vaterite after a 24-h reaction, with the exception of MgCl2, which produced a substantial quantity of magnesium calcite. CONCLUSIONS: The work demonstrates the effect of several (in)organic additives on MICP and sets the stage for further research to understand additive effects on MICP to achieve controlled CaCO3 precipitation.


Assuntos
Carbonato de Cálcio , Sporosarcina , Carbonato de Cálcio/metabolismo , Cloreto de Magnésio/metabolismo , Sporosarcina/metabolismo , Precipitação Química , Microscopia Eletrônica de Varredura
7.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33323482

RESUMO

One of the most conserved traits in the evolution of biomineralizing organisms is the taxon-specific selection of skeletal minerals. All modern scleractinian corals are thought to produce skeletons exclusively of the calcium-carbonate polymorph aragonite. Despite strong fluctuations in ocean chemistry (notably the Mg/Ca ratio), this feature is believed to be conserved throughout the coral fossil record, spanning more than 240 million years. Only one example, the Cretaceous scleractinian coral Coelosmilia (ca. 70 to 65 Ma), is thought to have produced a calcitic skeleton. Here, we report that the modern asymbiotic scleractinian coral Paraconotrochus antarcticus living in the Southern Ocean forms a two-component carbonate skeleton, with an inner structure made of high-Mg calcite and an outer structure composed of aragonite. P. antarcticus and Cretaceous Coelosmilia skeletons share a unique microstructure indicating a close phylogenetic relationship, consistent with the early divergence of P. antarcticus within the Vacatina (i.e., Robusta) clade, estimated to have occurred in the Mesozoic (ca. 116 Mya). Scleractinian corals thus join the group of marine organisms capable of forming bimineralic structures, which requires a highly controlled biomineralization mechanism; this capability dates back at least 100 My. Due to its relatively prolonged isolation, the Southern Ocean stands out as a repository for extant marine organisms with ancient traits.


Assuntos
Exoesqueleto/metabolismo , Antozoários/metabolismo , Calcificação Fisiológica/genética , Carbonato de Cálcio/metabolismo , Exoesqueleto/anatomia & histologia , Exoesqueleto/química , Animais , Antozoários/anatomia & histologia , Antozoários/classificação , Antozoários/genética , Evolução Biológica , Carbonato de Cálcio/química , Fósseis , Filogenia
8.
J Environ Manage ; 365: 121300, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955041

RESUMO

Chromium contamination from abandoned industrial sites and inadequately managed waste disposal areas poses substantial environmental threat. Microbially induced carbonate precipitation (MICP) has shown promising, eco-friendly solution to remediate Cr(VI) and divalent heavy metals. In this study, MICP was carried out for chromium immobilization by an ureolytic bacterium Arthrobacter creatinolyticus which is capable of reducing Cr(VI) to less toxic Cr(III) via extracellular polymeric substances (EPS) production. The efficacy of EPS driven reduction was confirmed by cellular fraction analysis. MICP carried out in aqueous solution with 100 ppm of Cr(VI) co-precipitated 82.21% of chromium with CaCO3 and the co-precipitation is positively correlated with reduction of Cr(VI). The organism was utilized to remediate chromium spiked sand and found that MICP treatment decreased the exchangeable fraction of chromium to 0.54 ±â€¯0.11% and increased the carbonate bound fraction to 26.1 ±â€¯1.15% compared to control. XRD and SEM analysis revealed that Cr(III) produced during reduction, influenced the polymorph selection of vaterite during precipitation. Evaluation of MICP to remediate Cr polluted soil sample collected from Ranipet, Tamil Nadu also showed effective immobilization of chromium. Thus, A. creatinolyticus proves to be viable option for encapsulating chromium contaminated soil via MICP process, and effectively mitigating the infiltration of Cr(VI) into groundwater and adjacent water bodies.


Assuntos
Arthrobacter , Carbonatos , Cromo , Arthrobacter/metabolismo , Cromo/química , Carbonatos/química , Poluentes do Solo/metabolismo , Poluentes do Solo/química , Carbonato de Cálcio/química
9.
J Environ Manage ; 351: 119773, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113789

RESUMO

In this work, industrial Kambara reactor desulphurization slag (KR slag) was indirectly carbonated. The effects of leaching time, leaching temperature, leaching agent types, and leaching agent concentration on the leaching ratio of calcium from KR slag were investigated. Subsequently, precipitated calcium carbonate (PCC) was synthesized by bubbling CO2 gas (flow rate of 15 mL/min) into 400 mL leaching solutions at 40 °C for 120 min with magnetic stirring at 300 rpm. It is found that calcium in KR slag can be selectively extracted using a diluted solution of ammonium acetate (CH3COONH4) or ammonium chloride (NH4Cl), while ammonium sulfate ((NH4)2SO4) solution is not suitable as leaching agent due to the formation of slightly soluble calcium sulfate (CaSO4). The leaching ratio of calcium is improved by extending the leaching time or increasing the leaching solvent concentration. However, leaching temperature has little effect on calcium extraction. After carbonating the NH4Cl- and CH3COONH4-leachate for 120 min, calcite and vaterite type PCC with a purity of 99% is synthesized. Each gram of KR slag can produce 0.794 g and 0.803 g PCC using NH4Cl and CH3COONH4 leaching agents respectively. Calculations show that 349.6 kg CO2 is captured by per ton of KR slag. The CO2 capture capacity of KR slag is significantly higher compared with previously studied materials.


Assuntos
Carbonato de Cálcio , Dióxido de Carbono , Resíduos Industriais/análise , Cálcio , Carbonatos , Aço
10.
World J Microbiol Biotechnol ; 40(7): 229, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825655

RESUMO

Biocementation, driven by ureolytic bacteria and their biochemical activities, has evolved as a powerful technology for soil stabilization, crack repair, and bioremediation. Ureolytic bacteria play a crucial role in calcium carbonate precipitation through their enzymatic activity, hydrolyzing urea to produce carbonate ions and elevate pH, thus creating favorable conditions for the precipitation of calcium carbonate. While extensive research has explored the ability of ureolytic bacteria isolated from natural environments or culture conditions, bacterial synergy is often unexplored or under-reported. In this study, we isolated bacterial strains from the local eutrophic river canal and evaluated their suitability for precipitating calcium carbonate polymorphs. We identified two distinct bacterial isolates with superior urea degradation ability (conductivity method) using partial 16 S rRNA gene sequencing. Molecular identification revealed that they belong to the Comamonas and Bacillus genera. Urea degradation analysis was performed under diverse pH (6,7 and 8) and temperature (15 °C,20 °C,25 °C and 30 °C) ranges, indicating that their ideal pH is 7 and temperature is 30 °C since 95% of the urea was degraded within 96 h. In addition, we investigated these strains individually and in combination, assessing their microbially induced carbonate precipitation (MICP) in silicate fine sand under low (14 ± 0.6 °C) and ideal temperature 30 °C conditions, aiming to optimize bio-mediated soil enhancement. Results indicated that 30 °C was the ideal temperature, and combining bacteria resulted in significant (p ≤ 0.001) superior carbonate precipitation (14-16%) and permeability (> 10- 6 m/s) in comparison to the average range of individual strains. These findings provide valuable insights into the potential of combining ureolytic bacteria for future MICP research on field applications including soil erosion mitigation, soil stabilization, ground improvement, and heavy metal remediation.


Assuntos
Bacillus , Biodegradação Ambiental , Carbonato de Cálcio , RNA Ribossômico 16S , Areia , Microbiologia do Solo , Ureia , Ureia/metabolismo , Bacillus/genética , Bacillus/metabolismo , Bacillus/enzimologia , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , Areia/microbiologia , Carbonato de Cálcio/metabolismo , Carbonato de Cálcio/química , Temperatura , Filogenia , Precipitação Química
11.
BMC Oral Health ; 24(1): 507, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685035

RESUMO

BACKGROUND: Dentin hypersensitivity, often occurring after dental treatments or from erosive lesions, is a prevalent patient complaint. This study introduces a paste combining 8% L-arginine, calcium carbonate, and potassium nitrate to evaluate its impact on dentinal tubules occlusion, dentin permeability, and tooth sensitivity. METHODS: Dentin surfaces from 24 third molars (thickness: 2 mm) were divided into two groups of 12. One received the experimental paste, while the other received a placebo without desensitizer. Permeability and sealing ability were assessed through scanning electron microscopy (SEM) and dentin permeability measurement. The pastes' effects on hypersensitivity were then examined in a triple-blind, randomized parallel-armed clinical trial with 16 eligible patients. Sensitivity to cold, touch, and spontaneous stimuli was recorded using the VAS scale at various intervals post-treatment. Statistical analysis was conducted using Shapiro-Wilk, Mann-Whitney U, Friedman, and Wilcoxon tests (α = 0.05). RESULTS: The permeability test demonstrated a significant reduction in dentin permeability in the experimental group (P = 0.002) compared to the control (P = 0.178). SEM images revealed most dentinal tubules in the intervention samples to be occluded. Clinically, both groups showed a significant decrease in the three types of evaluated sensitivity throughout the study. However, no significant difference in sensitivities between the two groups was observed, with the exception of cold sensitivity at three months post-treatment (P = 0.054). CONCLUSION: The innovative desensitizing paste featuring 8% L-arginine, calcium carbonate, and potassium nitrate effectively occluded dentinal tubules and reduced dentin permeability. It mitigated immediate and prolonged dentin hypersensitivity to various stimuli, supporting its potential role in managing dentin hypersensitivity. TRIAL REGISTRATION: http://irct.ir : IRCT20220829055822N1, September 9th, 2022.


Assuntos
Arginina , Carbonato de Cálcio , Dessensibilizantes Dentinários , Sensibilidade da Dentina , Microscopia Eletrônica de Varredura , Nitratos , Compostos de Potássio , Humanos , Sensibilidade da Dentina/tratamento farmacológico , Arginina/uso terapêutico , Carbonato de Cálcio/uso terapêutico , Nitratos/uso terapêutico , Masculino , Feminino , Compostos de Potássio/uso terapêutico , Dessensibilizantes Dentinários/uso terapêutico , Adulto , Permeabilidade da Dentina/efeitos dos fármacos , Dentina/efeitos dos fármacos , Cremes Dentais/uso terapêutico , Adulto Jovem , Pessoa de Meia-Idade
12.
Small ; 19(44): e2300346, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37433976

RESUMO

The evolutionary advantages afforded by phytoplankton calcification remain enigmatic. In this work, fluoroelectrochemical experiments reveal that the presence of a CaCO3 shell of a naturally calcifying coccolithophore, Coccolithus braarudii, offers protection against extracellular oxidants as measured by the time required for the switch-off in their chlorophyll signal, compared to the deshelled equivalents, suggesting the shift toward calcification offers some advantages for survival in the surface of radical-rich seawater.


Assuntos
Calcificação Fisiológica , Haptófitas , Fitoplâncton , Estresse Oxidativo , Concentração de Íons de Hidrogênio
13.
Appl Environ Microbiol ; 89(8): e0179422, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37439668

RESUMO

Current production of traditional concrete requires enormous energy investment that accounts for approximately 5 to 8% of the world's annual CO2 production. Biocement is a building material that is already in industrial use and has the potential to rival traditional concrete as a more convenient and more environmentally friendly alternative. Biocement relies on biological structures (enzymes, cells, and/or cellular superstructures) to mineralize and bind particles in aggregate materials (e.g., sand and soil particles). Sporosarcina pasteurii is a workhorse organism for biocementation, but most research to date has focused on S. pasteurii as a building material rather than a biological system. In this review, we synthesize available materials science, microbiology, biochemistry, and cell biology evidence regarding biological CaCO3 precipitation and the role of microbes in microbially induced calcium carbonate precipitation (MICP) with a focus on S. pasteurii. Based on the available information, we provide a model that describes the molecular and cellular processes involved in converting feedstock material (urea and Ca2+) into cement. The model provides a foundational framework that we use to highlight particular targets for researchers as they proceed into optimizing the biology of MICP for biocement production.


Assuntos
Carbonato de Cálcio , Conservação de Recursos Energéticos , Microbiologia Industrial , Sporosarcina , Compostos de Amônio/metabolismo , Carbonato de Cálcio/economia , Carbonato de Cálcio/metabolismo , Precipitação Química , Sporosarcina/citologia , Sporosarcina/metabolismo , Ureia/metabolismo
14.
Glob Chang Biol ; 29(11): 3010-3018, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36943744

RESUMO

Projecting the effects of climate change on net reef calcium carbonate production is critical to understanding the future impacts on ecosystem function, but prior estimates have not included corals' natural adaptive capacity to such change. Here we estimate how the ability of symbionts to evolve tolerance to heat stress, or for coral hosts to shuffle to favourable symbionts, and their combination, may influence responses to the combined impacts of ocean warming and acidification under three representative concentration pathway (RCP) emissions scenarios (RCP2.6, RCP4.5 and RCP8.5). We show that symbiont evolution and shuffling, both individually and when combined, favours persistent positive net reef calcium carbonate production. However, our projections of future net calcium carbonate production (NCCP) under climate change vary both spatially and by RCP. For example, 19%-35% of modelled coral reefs are still projected to have net positive NCCP by 2050 if symbionts can evolve increased thermal tolerance, depending on the RCP. Without symbiont adaptive capacity, the number of coral reefs with positive NCCP drops to 9%-13% by 2050. Accounting for both symbiont evolution and shuffling, we project median positive NCPP of coral reefs will still occur under low greenhouse emissions (RCP2.6) in the Indian Ocean, and even under moderate emissions (RCP4.5) in the Pacific Ocean. However, adaptive capacity will be insufficient to halt the transition of coral reefs globally into erosion by 2050 under severe emissions scenarios (RCP8.5).


Assuntos
Antozoários , Recifes de Corais , Animais , Antozoários/fisiologia , Ecossistema , Mudança Climática , Carbonato de Cálcio
15.
J Med Primatol ; 52(3): 156-162, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36896674

RESUMO

BACKGROUND: Urinalysis is a rapid, non-invasive method used to obtain diagnostic information on primates. While several studies have investigated dipstick and specific gravity values in chimpanzees, urine sediment analysis is often excluded. Crystalluria, observed during urine sediment analysis, can be benign or indicate renal pathologies. METHODS: In total, 665 urine samples from sanctuary-housed chimpanzees were analyzed over the course of 17 months for pH, specific gravity, time of collection, and crystalluria. RESULTS AND CONCLUSIONS: Calcium salt crystalluria was seen in 9.0% of the samples from 23.7% of the individuals in the study. Urinary pH and specific gravity were significantly higher in samples with crystalluria than in those lacking crystalluria, while time of collection did not differ between the two groups. While diet is the most likely cause of the crystalluria in this population, several medications could also cause urinary crystallization. Further exploration of the significance of calcium salt crystalluria in chimpanzees is warranted.


Assuntos
Cálcio , Pan troglodytes , Animais , Cristalúria , Urinálise/métodos
16.
Environ Sci Technol ; 57(8): 3104-3113, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36781166

RESUMO

Mining wastes or combustion ash are materials of high carbon sequestration potential but are also known for their toxicity in terms of heavy metal content. To utilize such waste materials for engineered carbon mineralization purposes, there is a need to investigate the fate and mobility of toxic metals. This is a study of the coprecipitation of metals with calcium carbonate for environmental heavy metal mitigation. The study also examines the stability of precipitated phases under environmentally relevant acid conditions. For a wide range of cadmium (Cd) and zinc (Zn) concentrations (10 to 5000 mg/L), induced coprecipitation led to greater than 99% uptake from water. The calcium carbonate phases were found to contain amounts as high as 9.9 wt % (Cd) and 17 wt % (Zn), as determined by novel synchrotron techniques, including X-ray fluorescence element mapping and three-dimensional (3D) nanotransmission X-ray microscopy (TXM). TXM imaging revealed first-of-a-kind observations of chemical gradients and internal nanoporosity within particles. These observations provided new insights into the mechanisms leading to the retention of coprecipitated heavy metals during the dissolution of calcite in acidic (pH 4) solutions. These observations highlight the feasibility of utilizing carbonate coprecipitation as an engineered approach to the durable sequestration of toxic metals.


Assuntos
Metais Pesados , Zinco , Cádmio , Metais Pesados/química , Carbonatos , Carbonato de Cálcio
17.
Environ Res ; 219: 115121, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549485

RESUMO

In order to solve the dust problem caused by sandstorms, this paper aims to propose a new method of enriching urease-producing microbial communities in seawater in a non-sterile environment. Besides, the difference of dust suppression performance of enriched microorganisms under different pH conditions was also explored to adapt the dust. The Fourier-transform infrared spectrometry (FTIR) and Scanning electron microscopy (SEM) confirmed the formation of CaCO3. The X-ray diffraction (XRD) further showed that the crystal forms of CaCO3 were calcite and vaterite. When urease activity was equivalent, the alkaline environment was conducive to the transformation of CaCO3 to more stable calcite. The mineralization rate at pH = 10 reached the maximum value on the 7th day, which was 97.49 ± 1.73%. Moreover, microbial community analysis results showed that the relative abundance of microbial community structure was different under different pH enrichment. Besides, the relative abundance of Sporosarcina, a representative genus of urease-producing microbial community, increased with the increase of pH under culture conditions, which consistent with the mineralization performance results. In addition, the genus level species network diagram also showed that in the microbial community, Sporosarcina was negatively correlated with another urease-producing genus Bacillus, and had a reciprocal relationship with Atopostipes, which means that the urease-producing microbial community was structurally stable. The enrichment of urease-producing microbial communities in seawater will provide empirical support for the large-scale engineering application of MICP technology in preventing and controlling sandstorms in deserts.


Assuntos
Sporosarcina , Urease , Carbonato de Cálcio/química , Difração de Raios X , Água do Mar
18.
Appl Microbiol Biotechnol ; 107(18): 5687-5700, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37480371

RESUMO

The microbial-induced carbonate precipitation (MICP) has acquired significant attention due to its immense potential in sustainable engineering applications, particularly in soil improvement. However, the precise control of microbial-induced calcium carbonate precipitation remains a formidable challenge in engineering practices, owing to the uncertain movement paths of bacteria and the nonuniform distribution of soil pores. Taking inspiration from targeted therapy in medicine, this paper presents novel research on the development and validation of magnetically responsive bacteria. These bacteria demonstrate the ability to target calcium carbonate precipitation in a microfluidic chip, thereby promoting an environmentally friendly and ecologically sustainable biomineralization paradigm. The study focuses on investigating the migration of magnetite nanoparticles (MNPs) in aqueous solutions and enhancing the stability of MNP culture liquids. A specially designed microfluidic chip is utilized to simulate natural sand particles and their pores, while an external magnetic field is applied to precisely control the movement path of the artificial magnetic bacteria, enabling targeted precipitation of calcium carbonate at the micron-scale. Verification of the engineered artificial magnetic bacteria and their ability to induce calcium carbonate precipitation is conducted through SEM-EDS analysis, microfluidic chip observations, and the application of the K-means algorithm and ImageJ software to analyze calcium carbonate formation. The influence of the concentration of magnetic nanoparticles on the calcium carbonate production rate was also studied. The results confirm the potential of the artificial magnetic bacteria for future engineering applications. KEY POINTS: • Sporosarcina pasteurii is first time successfully engineered into artificial magnetic bacteria. • The artificial magnetic bacteria show excellent performance of targeted transportation and directional deposition of CaCO3 in microfluidic chip. • The emergence of artificial magnetic bacteria promotes paradigm shift of next generation environmentally friendly biomineralization.


Assuntos
Carbonato de Cálcio , Solo , Algoritmos , Bactérias , Campos Magnéticos
19.
Appl Microbiol Biotechnol ; 107(21): 6683-6701, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37668700

RESUMO

In an attempt to draw a correlation between calcium carbonate (CaCO3) precipitation and biomacromolecules such as extracellular polymeric substances and enzyme activity in biomineralizing microbe, this report aims to elucidate the ureolytic and ammonification route in Paenibacillus alkaliterrae to explore the possible role of organic biomolecule(s) present on cell surface in mediating nucleation and crystallization of biogenic CaCO3. After 168 h of biomineralization in ureolysis and ammonification, 2.2 g/l and 0.87 g/l of CaCO3 precipitates were obtained, respectively. The highest carbonic anhydrase activity (31.8 µmoles/min/ml) was evidenced in ammonification as opposed to ureolysis (24.8 µmoles/min/ml). Highest urease activity reached up to 9.26 µmoles/min/ml in ureolytic pathway. Extracellular polymeric substances such as polysaccharides and proteins were found to have a vital role not only in the nucleation and crystal growth but also in addition direct polymorphic fate of CaCO3 nanoparticles. EPS production was higher during ammonification (3.1 mg/ml) than in ureolysis (0.72 mg/ml). CaCO3 nanoparticle-associated proteins were found to be 0.82 mg/ml in ureolysis and 0.56 mg/ml in ammonification. After 30 days of biomineralization, all the polymorphic forms stabilized to calcite in ureolysis but in ammonification vaterite predominated. In our study, we showed that organic template-mediated prokaryotic biomineralization follows the non-classical nucleation and varying proportions of these organic components causes selective polymorphism of CaCO3 nanoparticles. Overall, the findings are expected to further the fundamental understanding of enzymes, EPS-driven non-classical nucleation of CaCO3, and we foresee the design of fit-for-purpose futuristic biominerals arising from such renewed understanding of biomineralization. KEY POINTS: • Organic-inorganic interface of cell surface promote crystallization of biominerals • Carbohydrate and proteins in the interface results selective polymorphism of CaCO3 • Calcite stabilized at 30 days in ureolysis, vaterite-calcite mix in ammonification.


Assuntos
Carbonato de Cálcio , Matriz Extracelular de Substâncias Poliméricas , Cristalização , Carbonato de Cálcio/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo
20.
Appl Microbiol Biotechnol ; 107(1): 187-200, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36474025

RESUMO

Changes in the diversity of indigenous calcifying bacterial communities were determined before and after 1 year of biorepair treatment applied on indoor micro-cracked concrete walls. The biotreatment was based on the formation of an organo-mineral coating generated by Alkalihalobacillus pseudofirmus cultured in the presence of calcium lactate. Before and after the biotreatment, the calcifying bacterial strains belonging to either Firmicutes or Actinobacteria phylum were dominant depending on the sampling area. Nevertheless, the proportion of the calcifying Bacillus, Brachybacterium, Microbacterium, and Rhodococcus genera changed. These bacterial strains were likely to participate in the effectiveness of the biotreatment. Isolated bacteria of Microbacterium and Rhodococcus genera reported interesting calcifying capacity associated to microbial growth rates greater than the one observed for Alkalihalobacillus pseudofirmus. A bacterial consortium containing Alkalihalobacillus pseudofirmus, Rhodococcus cercidiphylli, and Microbacterium schleiferi demonstrated an improved calcifying capacity. Consequently, using a bacterial consortium instead of a single strain is an efficient way to improve the robustness of the biorepair treatment. KEY POINTS: • Indigenous calcifying bacteria mainly belonged to Firmicutes and Actinobacteria • Microbacterium and Rhodococcus reported the quickest growth rate with calcium lactate • A bacterial consortium with improved calcifying capacity is proposed.


Assuntos
Bactérias , Lactatos , RNA Ribossômico 16S/genética , Filogenia , Bactérias/genética , Firmicutes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA