Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.259
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(24): 5363-5374.e16, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37972591

RESUMO

Cav1.2 channels play crucial roles in various neuronal and physiological processes. Here, we present cryo-EM structures of human Cav1.2, both in its apo form and in complex with several drugs, as well as the peptide neurotoxin calciseptine. Most structures, apo or bound to calciseptine, amlodipine, or a combination of amiodarone and sofosbuvir, exhibit a consistent inactivated conformation with a sealed gate, three up voltage-sensing domains (VSDs), and a down VSDII. Calciseptine sits on the shoulder of the pore domain, away from the permeation path. In contrast, when pinaverium bromide, an antispasmodic drug, is inserted into a cavity reminiscent of the IFM-binding site in Nav channels, a series of structural changes occur, including upward movement of VSDII coupled with dilation of the selectivity filter and its surrounding segments in repeat III. Meanwhile, S4-5III merges with S5III to become a single helix, resulting in a widened but still non-conductive intracellular gate.


Assuntos
Canais de Cálcio Tipo L , Venenos Elapídicos , Humanos , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Neurotoxinas , Domínios Proteicos , Microscopia Crioeletrônica
2.
Cell ; 185(25): 4801-4810.e13, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36417914

RESUMO

Drug-drug interaction of the antiviral sofosbuvir and the antiarrhythmics amiodarone has been reported to cause fatal heartbeat slowing. Sofosbuvir and its analog, MNI-1, were reported to potentiate the inhibition of cardiomyocyte calcium handling by amiodarone, which functions as a multi-channel antagonist, and implicate its inhibitory effect on L-type Cav channels, but the molecular mechanism has remained unclear. Here we present systematic cryo-EM structural analysis of Cav1.1 and Cav1.3 treated with amiodarone or sofosbuvir alone, or sofosbuvir/MNI-1 combined with amiodarone. Whereas amiodarone alone occupies the dihydropyridine binding site, sofosbuvir is not found in the channel when applied on its own. In the presence of amiodarone, sofosbuvir/MNI-1 is anchored in the central cavity of the pore domain through specific interaction with amiodarone and directly obstructs the ion permeation path. Our study reveals the molecular basis for the physical, pharmacodynamic interaction of two drugs on the scaffold of Cav channels.


Assuntos
Amiodarona , Sofosbuvir , Sofosbuvir/efeitos adversos , Amiodarona/farmacologia , Antivirais/farmacologia , Miócitos Cardíacos/metabolismo , Sítios de Ligação , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo
3.
Annu Rev Cell Dev Biol ; 37: 311-340, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34375534

RESUMO

Calcium (Ca2+) is a unique mineral that serves as both a nutrient and a signal in all eukaryotes. To maintain Ca2+ homeostasis for both nutrition and signaling purposes, the tool kit for Ca2+ transport has expanded across kingdoms of eukaryotes to encode specific Ca2+ signals referred to as Ca2+ signatures. In parallel, a large array of Ca2+-binding proteins has evolved as specific sensors to decode Ca2+ signatures. By comparing these coding and decoding mechanisms in fungi, animals, and plants, both unified and divergent themes have emerged, and the underlying complexity will challenge researchers for years to come. Considering the scale and breadth of the subject, instead of a literature survey, in this review we focus on a conceptual framework that aims to introduce readers to the principles and mechanisms of Ca2+ signaling. We finish with several examples of Ca2+-signaling pathways, including polarized cell growth, immunity and symbiosis, and systemic signaling, to piece together specific coding and decoding mechanisms in plants versus animals.


Assuntos
Sinalização do Cálcio , Cálcio , Animais , Cálcio/metabolismo , Homeostase , Plantas/genética , Plantas/metabolismo
4.
Cell ; 177(6): 1495-1506.e12, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31150622

RESUMO

The L-type voltage-gated Ca2+ (Cav) channels are modulated by various compounds exemplified by 1,4-dihydropyridines (DHP), benzothiazepines (BTZ), and phenylalkylamines (PAA), many of which have been used for characterizing channel properties and for treatment of hypertension and other disorders. Here, we report the cryoelectron microscopy (cryo-EM) structures of Cav1.1 in complex with archetypal antagonistic drugs, nifedipine, diltiazem, and verapamil, at resolutions of 2.9 Å, 3.0 Å, and 2.7 Å, respectively, and with a DHP agonist Bay K 8644 at 2.8 Å. Diltiazem and verapamil traverse the central cavity of the pore domain, directly blocking ion permeation. Although nifedipine and Bay K 8644 occupy the same fenestration site at the interface of repeats III and IV, the coordination details support previous functional observations that Bay K 8644 is less favored in the inactivated state. These structures elucidate the modes of action of different Cav ligands and establish a framework for structure-guided drug discovery.


Assuntos
Bloqueadores dos Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/ultraestrutura , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil) , Sequência de Aminoácidos , Animais , Sítios de Ligação , Canais de Cálcio/metabolismo , Canais de Cálcio/fisiologia , Canais de Cálcio/ultraestrutura , Canais de Cálcio Tipo L/fisiologia , Microscopia Crioeletrônica , Diltiazem , Ligantes , Masculino , Modelos Moleculares , Nifedipino , Coelhos , Verapamil
5.
Cell ; 175(1): 57-70.e17, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30220455

RESUMO

Neurons in Caenorhabditis elegans and other nematodes have been thought to lack classical action potentials. Unexpectedly, we observe membrane potential spikes with defining characteristics of action potentials in C. elegans AWA olfactory neurons recorded under current-clamp conditions. Ion substitution experiments, mutant analysis, pharmacology, and modeling indicate that AWA fires calcium spikes, which are initiated by EGL-19 voltage-gated CaV1 calcium channels and terminated by SHK-1 Shaker-type potassium channels. AWA action potentials result in characteristic signals in calcium imaging experiments. These calcium signals are also observed when intact animals are exposed to odors, suggesting that natural odor stimuli induce AWA spiking. The stimuli that elicit action potentials match AWA's specialized function in climbing odor gradients. Our results provide evidence that C. elegans neurons can encode information through regenerative all-or-none action potentials, expand the computational repertoire of its nervous system, and inform future modeling of its neural coding and network dynamics.


Assuntos
Potenciais de Ação/fisiologia , Nervo Olfatório/fisiologia , Olfato/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Canais de Cálcio/fisiologia , Quimiotaxia/fisiologia , Potenciais da Membrana/fisiologia , Odorantes , Neurônios Receptores Olfatórios/metabolismo
6.
Physiol Rev ; 103(1): 787-854, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007181

RESUMO

An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.


Assuntos
Canalopatias , Glomerulosclerose Segmentar e Focal , Nefropatias , Humanos , Canal de Cátion TRPC6/metabolismo , Canalopatias/metabolismo , Canais de Cátion TRPC/metabolismo , Glomérulos Renais/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Nefropatias/metabolismo
7.
Mol Cell ; 82(19): 3661-3676.e8, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36206740

RESUMO

Mitochondrial Ca2+ uptake, mediated by the mitochondrial Ca2+ uniporter, regulates oxidative phosphorylation, apoptosis, and intracellular Ca2+ signaling. Previous studies suggest that non-neuronal uniporters are exclusively regulated by a MICU1-MICU2 heterodimer. Here, we show that skeletal-muscle and kidney uniporters also complex with a MICU1-MICU1 homodimer and that human/mouse cardiac uniporters are largely devoid of MICUs. Cells employ protein-importation machineries to fine-tune the relative abundance of MICU1 homo- and heterodimers and utilize a conserved MICU intersubunit disulfide to protect properly assembled dimers from proteolysis by YME1L1. Using the MICU1 homodimer or removing MICU1 allows mitochondria to more readily take up Ca2+ so that cells can produce more ATP in response to intracellular Ca2+ transients. However, the trade-off is elevated ROS, impaired basal metabolism, and higher susceptibility to death. These results provide mechanistic insights into how tissues can manipulate mitochondrial Ca2+ uptake properties to support their unique physiological functions.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Trifosfato de Adenosina , Animais , Cálcio/metabolismo , Canais de Cálcio , Proteínas de Ligação ao Cálcio/genética , Dissulfetos/metabolismo , Humanos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Espécies Reativas de Oxigênio/metabolismo
8.
Annu Rev Neurosci ; 44: 335-357, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33770451

RESUMO

The large number of ion channels found in all nervous systems poses fundamental questions concerning how the characteristic intrinsic properties of single neurons are determined by the specific subsets of channels they express. All neurons display many different ion channels with overlapping voltage- and time-dependent properties. We speculate that these overlapping properties promote resilience in neuronal function. Individual neurons of the same cell type show variability in ion channel conductance densities even though they can generate reliable and similar behavior. This complicates a simple assignment of function to any conductance and is associated with variable responses of neurons of the same cell type to perturbations, deletions, and pharmacological manipulation. Ion channel genes often show strong positively correlated expression, which may result from the molecular and developmental rules that determine which ion channels are expressed in a given cell type.


Assuntos
Canais Iônicos , Neurônios
9.
Proc Natl Acad Sci U S A ; 121(22): e2401591121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38787877

RESUMO

The sodium (Na+) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (NaVs and CaVs, respectively). Unlike NaVs and CaVs, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145, and Y1436) that block these openings. Structural data suggest that occluded fenestrations underlie the pharmacological resistance of NALCN, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned residues with alanine (AAAA) and compared the effects of NaV, CaV, and NALCN blockers on both wild-type (WT) and AAAA channels. Most compounds behaved in a similar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cavity through distinct fenestrations, implying structural specificity to their modes of access. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug binding site(s) within the pore region. Intrigued by the activity of 2-APB and its analogues, we tested compounds containing the diphenylmethane/amine moiety on WT channels. We identified clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the pharmacological resistance of NALCN, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties.


Assuntos
Fenitoína , Sítios de Ligação , Humanos , Fenitoína/metabolismo , Fenitoína/farmacologia , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/metabolismo , Canais Iônicos/metabolismo , Canais Iônicos/genética , Células HEK293 , Animais , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/química , Proteínas de Membrana
10.
Trends Biochem Sci ; 47(10): 839-850, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35927139

RESUMO

Plants constantly come into contact with a diverse mix of pathogenic and beneficial microbes. The ability to distinguish between them and to respond appropriately is essential for plant health. Here we review recent progress in understanding the role of amino acid sensing, signaling, transport, and metabolism during plant-microbe interactions. Biochemical pathways converting individual amino acids into active compounds have recently been elucidated, and comprehensive large-scale approaches have brought amino acid sensors and transporters into focus. These findings show that plant central amino acid metabolism is closely interwoven with stress signaling and defense responses at various levels. The individual biochemical mechanisms and the interconnections between the different processes are just beginning to emerge and might serve as a foundation for new plant protection strategies.


Assuntos
Aminoácidos , Plantas , Aminoácidos/metabolismo , Plantas/metabolismo , Transdução de Sinais
11.
Physiol Rev ; 104(1): 23-31, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561136
12.
Proc Natl Acad Sci U S A ; 120(16): e2217665120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036971

RESUMO

The mitochondrial calcium uniporter is a Ca2+ channel that imports cytoplasmic Ca2+ into the mitochondrial matrix to regulate cell bioenergetics, intracellular Ca2+ signaling, and apoptosis. The uniporter contains the pore-forming MCU subunit, an auxiliary EMRE protein, and the regulatory MICU1/MICU2 subunits. Structural and biochemical studies have suggested that MICU1 gates MCU by blocking/unblocking the pore. However, mitoplast patch-clamp experiments argue that MICU1 does not block, but instead potentiates MCU via allosteric mechanisms. Here, we address this direct clash of the proposed MICU1 function. Supporting the MICU1-occlusion mechanism, patch-clamp demonstrates that purified MICU1 strongly suppresses MCU Ca2+ currents, and this inhibition is abolished by mutating the MCU-interacting K126 residue. Moreover, a membrane-depolarization assay shows that MICU1 prevents MCU-mediated Na+ flux into intact mitochondria under Ca2+-free conditions. Examining the observations underlying the potentiation model, we found that MICU1 occlusion was not detected in mitoplasts not because MICU1 cannot block, but because MICU1 dissociates from the uniporter complex. Furthermore, MICU1 depletion reduces uniporter transport not because MICU1 can potentiate MCU, but because EMRE is down-regulated. These results firmly establish the molecular mechanisms underlying the physiologically crucial process of uniporter regulation by MICU1.


Assuntos
Cálcio , Proteínas de Transporte da Membrana Mitocondrial , Cálcio/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Canais de Cálcio/metabolismo , Membranas Mitocondriais/metabolismo , Cálcio da Dieta , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(14): e2221242120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36976770

RESUMO

CaV1.2 channels are critical players in cardiac excitation-contraction coupling, yet we do not understand how they are affected by an important therapeutic target of heart failure drugs and regulator of blood pressure, angiotensin II. Signaling through Gq-coupled AT1 receptors, angiotensin II triggers a decrease in PIP2, a phosphoinositide component of the plasma membrane (PM) and known regulator of many ion channels. PIP2 depletion suppresses CaV1.2 currents in heterologous expression systems but the mechanism of this regulation and whether a similar phenomenon occurs in cardiomyocytes is unknown. Previous studies have shown that CaV1.2 currents are also suppressed by angiotensin II. We hypothesized that these two observations are linked and that PIP2 stabilizes CaV1.2 expression at the PM and angiotensin II depresses cardiac excitability by stimulating PIP2 depletion and destabilization of CaV1.2 expression. We tested this hypothesis and report that CaV1.2 channels in tsA201 cells are destabilized after AT1 receptor-triggered PIP2 depletion, leading to their dynamin-dependent endocytosis. Likewise, in cardiomyocytes, angiotensin II decreased t-tubular CaV1.2 expression and cluster size by inducing their dynamic removal from the sarcolemma. These effects were abrogated by PIP2 supplementation. Functional data revealed acute angiotensin II reduced CaV1.2 currents and Ca2+ transient amplitudes thus diminishing excitation-contraction coupling. Finally, mass spectrometry results indicated whole-heart levels of PIP2 are decreased by acute angiotensin II treatment. Based on these observations, we propose a model wherein PIP2 stabilizes CaV1.2 membrane lifetimes, and angiotensin II-induced PIP2 depletion destabilizes sarcolemmal CaV1.2, triggering their removal, and the acute reduction of CaV1.2 currents and contractility.


Assuntos
Angiotensina II , Acoplamento Excitação-Contração , Células Cultivadas , Angiotensina II/metabolismo , Transdução de Sinais , Miócitos Cardíacos/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(45): e2301534120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903257

RESUMO

L-type voltage-gated calcium (Ca2+) channels (L-VGCC) dysfunction is implicated in several neurological and psychiatric diseases. While a popular therapeutic target, it is unknown whether molecular mechanisms leading to disrupted L-VGCC across neurodegenerative disorders are conserved. Importantly, L-VGCC integrate synaptic signals to facilitate a plethora of cellular mechanisms; however, mechanisms that regulate L-VGCC channel density and subcellular compartmentalization are understudied. Herein, we report that in disease models with overactive mammalian target of rapamycin complex 1 (mTORC1) signaling (or mTORopathies), deficits in dendritic L-VGCC activity are associated with increased expression of the RNA-binding protein (RBP) Parkinsonism-associated deglycase (DJ-1). DJ-1 binds the mRNA coding for the alpha and auxiliary Ca2+ channel subunits CaV1.2 and α2δ2, and represses their mRNA translation, only in the disease states, specifically preclinical models of tuberous sclerosis complex (TSC) and Alzheimer's disease (AD). In agreement, DJ-1-mediated repression of CaV1.2/α2δ2 protein synthesis in dendrites is exaggerated in mouse models of AD and TSC, resulting in deficits in dendritic L-VGCC calcium activity. Finding of DJ-1-regulated L-VGCC activity in dendrites in TSC and AD provides a unique signaling pathway that can be targeted in clinical mTORopathies.


Assuntos
Doença de Alzheimer , Esclerose Tuberosa , Animais , Camundongos , Doença de Alzheimer/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Dendritos/metabolismo , Mamíferos/metabolismo , Esclerose Tuberosa/genética
15.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952941

RESUMO

Peripheral sensitization is one of the primary mechanisms underlying the pathogenesis of chronic pain. However, candidate molecules involved in peripheral sensitization remain incompletely understood. We have shown that store-operated calcium channels (SOCs) are expressed in the dorsal root ganglion (DRG) neurons. Whether SOCs contribute to peripheral sensitization associated with chronic inflammatory pain is elusive. Here we report that global or conditional deletion of Orai1 attenuates Complete Freund's adjuvant (CFA)-induced pain hypersensitivity in both male and female mice. To further establish the role of Orai1 in inflammatory pain, we performed calcium imaging and patch-clamp recordings in wild-type (WT) and Orai1 knockout (KO) DRG neurons. We found that SOC function was significantly enhanced in WT but not in Orai1 KO DRG neurons from CFA- and carrageenan-injected mice. Interestingly, the Orai1 protein level in L3/4 DRGs was not altered under inflammatory conditions. To understand how Orai1 is modulated under inflammatory pain conditions, prostaglandin E2 (PGE2) was used to sensitize DRG neurons. PGE2-induced increase in neuronal excitability and pain hypersensitivity was significantly reduced in Orai1 KO mice. PGE2-induced potentiation of SOC entry (SOCE) was observed in WT, but not in Orai1 KO DRG neurons. This effect was attenuated by a PGE2 receptor 1 (EP1) antagonist and mimicked by an EP1 agonist. Inhibition of Gq/11, PKC, or ERK abolished PGE2-induced SOCE increase, indicating PGE2-induced SOCE enhancement is mediated by EP1-mediated downstream cascade. These findings demonstrate that Orai1 plays an important role in peripheral sensitization. Our study also provides new insight into molecular mechanisms underlying PGE2-induced modulation of inflammatory pain.Significance Statement Store-operated calcium channel (SOC) Orai1 is expressed and functional in dorsal root ganglion (DRG) neurons. Whether Orai1 contributes to peripheral sensitization is unclear. The present study demonstrates that Orai1-mediated SOC function is enhanced in DRG neurons under inflammatory conditions. Global and conditional deletion of Orai1 attenuates complete Freund's adjuvant (CFA)-induced pain hypersensitivity. We also demonstrate that prostaglandin E2 (PGE2) potentiates SOC function in DRG neurons through EP1-mediated signaling pathway. Importantly, we have found that Orai1 deficiency diminishes PGE2-induced SOC function increase and reduces PGE2-induced increase in neuronal excitability and pain hypersensitivity. These findings suggest that Orai1 plays an important role in peripheral sensitization associated with inflammatory pain. Our study reveals a novel mechanism underlying PGE2/EP1-induced peripheral sensitization. Orai1 may serve as a potential target for pathological pain.


Assuntos
Cálcio , Dinoprostona , Animais , Feminino , Masculino , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Dinoprostona/farmacologia , Dinoprostona/metabolismo , Adjuvante de Freund/toxicidade , Adjuvante de Freund/metabolismo , Gânglios Espinais/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Dor
16.
Circ Res ; 133(2): 120-137, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37313722

RESUMO

BACKGROUND: Beta-2 adrenergic receptors (ß2ARs) but not beta-2 adrenergic receptors (ß1ARs) form a functional complex with L-type Ca2+ channels (LTCCs) on the cardiomyocyte membrane. However, how microdomain localization in the plasma membrane affects the function of these complexes is unknown. We aim to study the coupling between LTCC and ß adrenergic receptors in different cardiomyocyte microdomains, the distinct involvement of PKA and CAMKII (Ca2+/calmodulin-dependent protein kinase II) and explore how this functional complex is disrupted in heart failure. METHODS: Global signaling between LTCCs and ß adrenergic receptors was assessed with whole-cell current recordings and western blot analysis. Super-resolution scanning patch-clamp was used to explore the local coupling between single LTCCs and ß1AR or ß2AR in different membrane microdomains in control and failing cardiomyocytes. RESULTS: LTCC open probability (Po) showed an increase from 0.054±0.003 to 0.092±0.008 when ß2AR was locally stimulated in the proximity of the channel (<350 nm) in the transverse tubule microdomain. In failing cardiomyocytes, from both rodents and humans, this transverse tubule coupling between LTCC and ß2AR was lost. Interestingly, local stimulation of ß1AR did not elicit any change in the Po of LTCCs, indicating a lack of proximal functional interaction between the two, but we confirmed a general activation of LTCC via ß1AR. By using blockers of PKA and CaMKII and a Caveolin-3-knockout mouse model, we conclude that the ß2AR-LTCC regulation requires the presence of caveolin-3 and the activation of the CaMKII pathway. By contrast, at a cellular "global" level PKA plays a major role downstream ß1AR and results in an increase in LTCC current. CONCLUSIONS: Regulation of the LTCC activity by proximity coupling mechanisms occurs only via ß2AR, but not ß1AR. This may explain how ß2ARs tune the response of LTCCs to adrenergic stimulation in healthy conditions. This coupling is lost in heart failure; restoring it could improve the adrenergic response of failing cardiomyocytes.


Assuntos
Caveolina 3 , Insuficiência Cardíaca , Camundongos , Animais , Humanos , Caveolina 3/genética , Caveolina 3/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Adrenérgicos , Canais de Cálcio Tipo L/metabolismo
17.
J Neurosci ; 43(22): 4005-4018, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37185239

RESUMO

The composition of voltage-gated Ca2+ channel (Cav) subtypes that gate action potential (AP)-evoked release changes during the development of mammalian CNS synapses. Cav2.2 and Cav2.3 lose their function in gating-evoked release during postnatal synapse maturation. In mature boutons, Cav2.1 currents provide the almost exclusive trigger for evoked release, and Cav2.3 currents are required for the induction of presynaptic long-term potentiation. However, the functional significance of Cav2.2 remained elusive in mature boutons, although they remain present at active zones and continue contributing significantly to presynaptic Ca2+ influx. Here, we addressed the functional significance of Cav2.2 and Cav2.3 at mature parallel-fiber (PF) to Purkinje neuron synapses of mice of either sex. These synapses are known to exhibit the corresponding developmental Cav subtype changes in gating release. We addressed two hypotheses, namely that Cav2.2 and Cav2.3 are involved in triggering spontaneous glutamate release and that they are engaged in vesicle recruitment during repetitive evoked release. We found that spontaneous miniature release is Ca2+ dependent. However, experiments with Cav subtype-specific blockers excluded the spontaneous opening of Cavs as the Ca2+ source for spontaneous glutamate release. Thus, neither Cav2.2 nor Cav2.3 controls spontaneous release from PF boutons. Furthermore, vesicle recruitment during brief bursts of APs was also independent of Ca2+ influx through Cav2.2 and Cav2.3. However, Cav2.2, but not Cav2.3, currents significantly boosted vesicle recruitment during sustained high-frequency synaptic transmission. Thus, in mature PF boutons Cav2.2 channels are specifically required to sustain synaptic transmission during prolonged neuronal activity.SIGNIFICANCE STATEMENT At young CNS synapses, action potential-evoked release is gated via three subtypes of voltage-gated Ca2+ channels: Cav2.1, Cav2.2, and Cav2.3. During postnatal maturation, Cav2.2 and Cav2.3 lose their function in gating evoked release, such that at mature synapses Cav2.1 provides the almost exclusive source for triggering evoked release. Cav2.3 currents are required for the induction of presynaptic long-term potentiation. However, the function of the still abundant Cav2.2 in mature boutons remained largely elusive. Here, we studied mature cerebellar parallel-fiber synapses and found that Cav2.2 does not control spontaneous release. However, Ca2+ influx through Cav2.2 significantly boosted vesicle recruitment during trains of action potentials. Thus, Cav2.2 in mature parallel-fiber boutons participate in sustaining synaptic transmission during prolonged activity.


Assuntos
Canais de Cálcio Tipo N , Sinapses , Animais , Camundongos , Axônios/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo N/fisiologia , Mamíferos , Terminações Pré-Sinápticas/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
18.
J Neurosci ; 43(30): 5559-5573, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37419689

RESUMO

Widespread release of norepinephrine (NE) throughout the forebrain fosters learning and memory via adrenergic receptor (AR) signaling, but the molecular mechanisms are largely unknown. The ß2 AR and its downstream effectors, the trimeric stimulatory Gs-protein, adenylyl cyclase (AC), and the cAMP-dependent protein kinase A (PKA), form a unique signaling complex with the L-type Ca2+ channel (LTCC) CaV1.2. Phosphorylation of CaV1.2 by PKA on Ser1928 is required for the upregulation of Ca2+ influx on ß2 AR stimulation and long-term potentiation induced by prolonged theta-tetanus (PTT-LTP) but not LTP induced by two 1-s-long 100-Hz tetani. However, the function of Ser1928 phosphorylation in vivo is unknown. Here, we show that S1928A knock-in (KI) mice of both sexes, which lack PTT-LTP, express deficiencies during initial consolidation of spatial memory. Especially striking is the effect of this mutation on cognitive flexibility as tested by reversal learning. Mechanistically, long-term depression (LTD) has been implicated in reversal learning. It is abrogated in male and female S1928A knock-in mice and by ß2 AR antagonists and peptides that displace ß2 AR from CaV1.2. This work identifies CaV1.2 as a critical molecular locus that regulates synaptic plasticity, spatial memory and its reversal, and LTD.SIGNIFICANCE STATEMENT We show that phosphorylation of the Ca2+ channel CaV1.2 on Ser1928 is important for consolidation of spatial memory and especially its reversal, and long-term depression (LTD). Identification of Ser1928 as critical for LTD and reversal learning supports the model that LTD underlies flexibility of reference memory.


Assuntos
Plasticidade Neuronal , Memória Espacial , Camundongos , Masculino , Feminino , Animais , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia , Transdução de Sinais , Fosforilação , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Hipocampo/fisiologia
19.
J Physiol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037941

RESUMO

Phosphorylation enables rapid modulation of voltage-gated calcium channels (VGCC) in physiological and pathophysiological conditions. How phosphorylation modulates human CaV1.3 VGCC, however, is largely unexplored. We characterized modulation of CaV1.3 gating via S1475, the human equivalent of a phosphorylation site identified in the rat. S1475 is highly conserved in CaV1.3 but absent from all other high-voltage activating calcium channel types co-expressed with CaV1.3 in similar tissues. Further, it is located in the C-terminal EF-hand motif, which binds calmodulin (CaM). This is involved in calcium-dependent channel inactivation (CDI). We used amino acid exchanges that mimic either sustained phosphorylation (S1475D) or phosphorylation resistance (S1475A). Whole-cell and single-channel recordings of phosphorylation state imitating CaV1.3 variants in transiently transfected HEK-293 cells revealed functional relevance of S1475 in human CaV1.3. We obtained three main findings: (1) CaV1.3_S1475D, imitating sustained phosphorylation, displayed decreased current density, reduced CDI and (in-) activation kinetics shifted to more depolarized voltages compared with both wildtype CaV1.3 and the phosphorylation-resistant CaV1.3_S1475A variant. Corresponding to the decreased current density, we find a reduced open probability of CaV1.3_S1475D at the single-channel level. (2) Using CaM overexpression or depletion, we find that CaM is necessary for modulating CaV1.3 through S1475. (3) CaMKII activation led to CaV1.3_WT-current properties similar to those of CaV1.3_S1475D, but did not affect CaV1.3_S1475A, confirming that CaMKII modulates human CaV1.3 via S1475. Given the physiological and pathophysiological importance of CaV1.3, our findings on the S1475-mediated interplay of phosphorylation, CaM interaction and CDI provide hints for approaches on specific CaV1.3 modulation under physiological and pathophysiological conditions. KEY POINTS: Phosphorylation modulates activity of voltage-gated L-type calcium channels for specific cellular needs but is largely unexplored for human CaV1.3 channels. Here we report that S1475, a CaMKII phosphorylation site identified in rats, is functionally relevant in human CaV1.3. Imitating phosphorylation states at S1475 alters current density and inactivation in a calmodulin-dependent manner. In wildtype CaV1.3 but not in the phosphorylation-resistant variant S1475A, CaMKII activation elicits effects similar to constitutively mimicking phosphorylation at S1475. Our findings provide novel insights on the interplay of modulatory mechanisms of human CaV1.3 channels, and present a possible target for CaV1.3-specific gating modulation in physiological and pathophysiological conditions.

20.
J Biol Chem ; 299(3): 102946, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707054

RESUMO

Voltage-gated sodium and calcium channels are distinct, evolutionarily related ion channels that achieve remarkable ion selectivity despite sharing an overall similar structure. Classical studies have shown that ion selectivity is determined by specific binding of ions to the channel pore, enabled by signature amino acid sequences within the selectivity filter (SF). By studying ancestral channels in the pond snail (Lymnaea stagnalis), Guan et al. showed in a recent JBC article that this well-established mechanism can be tuned by alternative splicing, allowing a single CaV3 gene to encode both a Ca2+-permeable and an Na+-permeable channel depending on the cellular context. These findings shed light on mechanisms that tune ion selectivity in physiology and on the evolutionary basis of ion selectivity.


Assuntos
Processamento Alternativo , Canais de Cálcio , Canais de Sódio Disparados por Voltagem , Animais , Sequência de Aminoácidos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Íons/metabolismo , Caramujos/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA